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Abstract

Among the top five global causes of death for children ages one to fourteen is drowning. Drowning is the third most
common cause of unintentional mortality, according to data from the World Health Organization (WHO). Existing
drowning detection systems including the wearable and camera based approaches have proven to face various limitations
such as restricted field view, environmental sensitivity, delayed responses and limited applicability in real world. Moreover,
many existing approaches only focus on abnormal motion instead of accurately identifying the drowning behavior which
is generally subtle and motionless. These limitations highlight the need for more reliable, feasible and real time drowning
system. It is becoming inevitable to design a drowning detection system to protect swimmers, especially kids. This
research provides an early drowning detection method based on computer vision and deep learning approach. Using a
public available dataset we trained Residual Block 3 and Residual Block 4 of convolutional neural networks (CNNs). The
proposed architecture achieved 97.6% accuracy with a training time of 3.9137 seconds after feature optimization, which
demonstrated a remarkable performance for both prediction precision and computational capacity.
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1. Introduction

The drowning ranks third globally among children and
young adults aged 1–14 years for unintentional deaths,
with children under the age of five being most vulnerable
[1]. Worldwide, there are thought to be 236,000 drowning
deaths per year [2]. Drowning ranks among the top five
causes of death for children between the ages of one and
fourteen in 48 out of the 85 nations [3]. Accordingly, the
number of drowning deaths will rise as the population
grows and more homes and hotels with pools are built.
Governments and groups have conducted many inquiries to
determine the best course of action for saving lives [4]. Some
of these strategies include educating parents about the risks
of drowning through child monitoring programs, advocating
for the fencing or draining of backyard swimming pools and
garden ponds, and stepping up oversight of swimming in
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lakes, rivers, and beaches to lower the number of incidents.
Regretfully, these remedies are deemed inadequate and
simplistic [5].

1.1. Major contributions
The major contributions of this article are summarized

as follows.

• A customized deep learning architecture based on
Residual Block 3 and Residual Block 4 is proposed.

• Features extracted from residual blocks 3 and 4 are
fused using a serial-based feature fusion strategy.

• Binary Chimp Optimization (BCO) is applied to re-
duce feature dimensionality and computational com-
plexity.

• Multiple ML classifiers are evaluated to validate the
effectiveness of the proposed hybrid DL framework.

• The proposed framework integrates multilevel fea-
ture extraction, fusion, and optimization to improve
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accuracy and generalizability across diverse aquatic
environments.

2. Related Work

An intelligent automated monitoring system can be put
in place to effectively reduce drowning and ensure swim-
ming pool safety. There are two groups of techniques that
fall under the umbrella of automatic drowning detection [6].
The first category’s methods center on having swimmers
wear sensor equipment that is fastened to them via goggles
or a bracelet. These sensors can assess things like heart
rate, blood oxygen content, motion, hydraulic pressure, and
depth to keep an eye on the behavior of the swimmer [7].
The second category consists of vision-based techniques in
which swimmers are observed using overhead or underwater
cameras, and incidents of drowning are identified from the
camera’s output using ML algorithms [8]. However, in the
early stages of drowning, drowning victims are extremely
silent; therefore, these techniques are not very reliable [9].
Additionally, some researchers categorize normal swimmers
and drowners using deep neural networks [10]. However,
drowning is a rather uncommon emergency mishap. Few
opportunities exist for video cameras to capture drowning
events. Furthermore, the drowning video is difficult to
obtain and involves people’s privacy. Hence, there aren’t
many videos of drowning [11].

The majority of these studies use simulative drowning
behavior to extract characteristics of drowning behavior
and perform supervised classification. Nevertheless, the
symptoms of drowning are complicated, and very few people
experience them. Videos that simulate drowning are neither
authentic nor reliable since it is difficult for anyone to
mimic drowning activity properly [12]. We can create
drowning detection systems with greater intelligence thanks
to developments in physical equipment. Drowning detection
technologies make swimming pools safer, relieve lifeguard
workloads, and increase swimmer comfort [13]. IP cameras
are employed as network-edge devices in pool surveillance
systems, and videos are uploaded via the network to servers
and lifeguards for processing. The swimmers’ privacy may
be compromised by underwater videos, which must be
uploaded to a server for processing and storage [14]. This
process uses more network bandwidth and storage space,
which may make it impossible for the server to react quickly
to drowning incidents.

There are various crucial processes involved in devel-
oping a machine-learning-based classification model for
drowning detection [15]. First, a labeled dataset contain-
ing both drowning and non-drowning events is gathered
to guarantee diversity and applicability to the intended
deployment context. Resizing images or videos, standardiz-
ing pixel values, and applying data augmentation methods
for increased variability are examples of later data pre-
processing tasks. A crucial stage in the process is feature
extraction, which involves extracting pertinent features
from the data; for example, histogram of oriented gradients
(HOG) [16]. One selects a suitable machine learning algo-
rithm, like Random Forests or Support Vector Machines
(SVM), for categorization. After dividing the dataset into
training and validation sets, the model is trained, and its

hyperparameters are adjusted for the best results. On a
different test set, evaluation metrics such as accuracy, pre-
cision, recall, and F1 score are used to evaluate the model’s
efficacy. Based on the evaluation results, fine-tuning might
be required, which would entail changing the hyperpa-
rameters or gathering more data [17]. Ethics and privacy
must be taken into account at every stage of the process,
especially when working with sensitive data. Consistent
updates and retraining with fresh data add to the model’s
durability and efficacy [18].

The use of computer vision techniques for drowning de-
tection entails utilizing image processing methods to create
an automated system that can recognize drowning episodes.
Getting a well-annotated dataset with a variety of drown-
ing and non-drowning scenario instances is an important
first step. Following that, preprocessing operations are
performed on the photos or video frames, such as scaling
and normalization to guarantee constant pixel values [19].
After features are extracted, the labeled dataset is used to
train an appropriate classification method, which frequently
uses machine learning or deep learning models [20, 21]. In
many visual tasks nowadays, deep learning has demon-
strated remarkable success. Numerous deep learning-based
techniques for visual anomaly detection (VAD) are also
proposed by researchers [22]. The VAD challenges share
certain similarities with vision-based drowning detection
tasks, but they also frequently lack a substantial amount
of video data of abnormal events. Moreover, drowning is
an unusual occurrence [23]. This encourages the use of
convolutional auto-encoders for drowning detection, en-
abling unsupervised learning with better semantic feature
extraction [24]. To the best of our knowledge, this work
is the first attempt to apply convolutional auto-encoder
technology to the problem of drowning detection [25]. Since
outside waterways are often watched using high-altitude
cameras or drones, small-target recognition becomes crit-
ical [26]. Thus, we present a unique deep learning-based
method to improve small object recognition; experimental
findings show that the suggested strategy performs better
than earlier approaches [27].

In recent years, many researchers have proposed differ-
ent methods for drowning detection using deep learning
[37]. Li et al. [38] suggested a method for locating victims
at sea using a modified YOLOv3 and a dataset of 6079
images, achieving 72.17% accuracy. Chan et al. [39] pre-
sented an NVIDIA Jetson Nano-powered AlexNet model
trained on 2333 non-drowning and 1168 drowning images
with 85% accuracy. Handalage et al. [40] proposed a three-
part rescue system including drowning victim detection,
risky activity detection, and rescue drone dispatch. Hasan
et al. [41] provided a dataset with three aquatic behav-
iors and reported accuracies of 96.85% (ResNet50), 83.25%
(VGG16), and 96.7% (MobileNet). Wearable sensor-based
approaches were also explored [42]. Other works focus on
anomaly detection through future-frame prediction [43]
and small-object swimmer detection using CNN+SVM [44].
Memory-augmented and prototype-based models have been
explored for anomaly detection [45, 46].

2.1. Motivation of the study
Although various approaches have been proposed us-

ing CNN architectures, residual models, and handcrafted
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Figure 1: Overall proposed framework for drowning detection
classification (augmentation → residual feature extraction → fusion
→ BCO selection → ML classifier → Grad-CAM).

Table 1: Dataset description (original and augmented).

Dataset #Images #Classes Augmented Train/Test
Drowning classifi-
cation

678 2 1000/1000 500/500

features, many methods rely on static frame-level analysis,
lack multilevel spatiotemporal feature extraction, and use
limited fusion/optimization strategies. These limitations
affect real-time feasibility, adaptability, and accuracy. To
address these gaps, we propose a hybrid DL–optimization
framework using Residual Blocks 3 and 4 for multilevel
feature extraction, serial feature fusion, and BCO for di-
mensionality reduction.

3. Modelling of proposed framework

The proposed framework for drowning detection classifi-
cation is illustrated in Fig. 1. Data augmentation is applied
to mitigate class imbalance. Then, two customized models
(residual block- 3 and 4) extract complementary features
that are fused using a serial fusion strategy. The BCO
performs feature selection and dimensionality reduction,
and the selected features are fed to ML classifiers. Finally,
Grad-CAM is used for interpretability.

3.1. Dataset augmentation
An openly accessible dataset is used in this study [76].

The dataset contains two classes (drowning and not drown-
ing). Dataset statistics are reported in Table 1. The data
augmentation increases training diversity and improves
generalization by applying transformations such as flipping,
rotation, translation, and photometric variation [58, 59].
It is especially beneficial for limited datasets and reduces
overfitting by exposing the model to plausible input varia-
tions [60, 61]. In this work, augmentation operations (e.g.,
left/right flip and 90◦ rotation) are applied until sufficient
samples per class are produced and which is illustrated in
Fig. 2) [62, 63].

3.2. Architecture of customized residual blocks
Residual blocks mitigate vanishing gradients and enable

deeper networks by using skip connections [64, 65, 66]. The
Residual Block 3 design used in this study is shown in Fig. 3.
Its operation can be expressed as (1).

Figure 2: Illustration of augmentation operations applied to generate
diverse training samples.

Figure 3: Customized Residual Block 3 architecture used for feature
extraction.

Figure 4: Customized Residual Block 4 architecture used for deeper
feature extraction.

Out = Act
(
BN

(
Conv(n;x1)

)
+Conv

(
Act

(
BN(Conv(n;x2))

)
;x3

))
(1)

Residual block 4 extends residual block 3 by increasing
representational capacity through an additional residual
transformation branch (Fig. 5) [67] and which is expressed
as (2).

Out = Act
(
BN

(
Conv(n;x1)

)
+Conv

(
Act(BN(Conv(n;x2)));x3

)
+Conv

(
Act(BN(Conv(n;x3)));x4

))
.

(2)

3.3. Combined residual blocks 3 and 4: Pseudocode
Algorithm 1 describes the generalized pseudocode for

the combined residual blocks.

3.4. Serial-based feature fusion
Serial-based feature fusion integrates complementary

features in a sequential manner to enhance representation
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Figure 5: Customized residual block 4 architecture used for deeper
feature extraction.

Algorithm 1 Generalized pseudocode for combined Resid-
ual Blocks 3 and 4
Require: Input images I
Ensure: Output probability ŷ
1: X← Conv2D(I, 64, 7×7, stride = 2)
2: X← BN(X); X← ReLU(X)
3: X←MaxPool(X, 3×3, stride = 2)
4: S← X ▷ Identity shortcut (RB3)
5: X ← Conv2D(X, 64, 3×3); X ← BN(X); X ←

ReLU(X)
6: X← Conv2D(X, 64, 3×3); X← BN(X)
7: X← Add(X,S); X← ReLU(X)
8: S← Conv2D(X, 128, 1×1) ▷ Projection shortcut

(RB4)
9: S← BN(S)

10: X ← Conv2D(X, 128, 3×3); X ← BN(X); X ←
ReLU(X)

11: X← Conv2D(X, 128, 3×3); X← BN(X)
12: X← Add(X,S); X← ReLU(X)
13: X← GAP(X)
14: ŷ ← Dense(X, activation = sigmoid)
15: return ŷ

learning [68, 69]. The fusion operation is expressed as:

F =

[
f1
f2

]
(3)

In (3), f1 and f2 denote features extracted from Residual
Blocks 3 and 4, respectively.

3.5. Feature optimization using BCO
Chimp Optimization Algorithm (ChOA) is a swarm-

intelligence optimizer that models group hunting behavior
[71, 72]. In this work, a binary version is employed for
feature selection to reduce dimensionality and improve
computational efficiency. The position update is performed
using Eqs. (4)–(13).

s1(t+1) = satt(t)− k1 ⊙ uatt. (4)

uatt = b1 ⊙ satt(t)− n⊙ schimp(t). (5)

s2(t+1) = sbar(t)− k2 ⊙ ubar. (6)

ubar = b2 ⊙ sbar(t)− n⊙ schimp(t). (7)

Table 2: Feature fusion results on drowning detection classification
dataset

Classifier Precision Recall F1 Acc. Time (s)

NNN 97.9 97.9 97.9 97.9 11.971
MNN 97.9 97.9 97.9 97.9 9.1934
WNN 97.5 97.5 97.5 97.5 13.437
BNN 97.7 97.1 97.4 97.1 9.1136
TNN 97.2 97.2 97.2 97.2 8.8681

488 12

9 491

(97.6%) (2.4%)

(1.8%) (98.2%)

Predicted Class

T
ru

e
C
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ss

Drowning Not Drowning

Drowning

Not Drowning

Figure 6: Confusion matrix of NNN classifier after BCO-based
feature selection (488, 12, 9, 491).

s3(t+1) = scha(t)− k3 ⊙ ucha. (8)

ucha = b3 ⊙ scha(t)− n⊙ schimp(t). (9)

s4(t+1) = sdrv(t)− k4 ⊙ udrv. (10)

udrv = b4 ⊙ sdrv(t)− n⊙ schimp(t). (11)

schimp(t+1) =
s1(t+1) + s2(t+1) + s3(t+1) + s4(t+1)

4
.

(12)

schimp(t+1) =
s1 + s2 + s3 + s4

4
. (13)

4. Experimental Results and Analysis

The training/testing ratio is fixed at 50:50. Hyperpa-
rameters include learning rate 0.0002, mini-batch size 32,
epochs 100, momentum 0.7223, and SGD optimizer. A
10-fold cross-validation is used. Metrics include accuracy,
precision, recall, F1-score, and computational time.

Table 2 reports results for feature fusion. The highest
accuracy (97.9%) is achieved by NNN with time 11.971 s
and its corresponding confusion matrix is shown in Fig. 6,
and further the time comparison in Fig. 8.

Table 3 reports the results after selecting the BCO
feature. The best accuracy (96.8%) is achieved by WNN
with time 3.9137 s and its corresponding confusion matrix
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Figure 7: Confusion matrix of WNN classifier after BCO-based
feature selection (484, 16, 16, 484).

Table 3: Feature optimization-(BCO) results on drowning detection
classification dataset.

Classifier Precision Recall F1 Acc. Time (s)

NNN 96.3 96.3 96.3 96.3 4.028
MNN 95.7 95.7 95.7 95.7 3.0174
WNN 96.8 96.8 96.8 96.8 3.9137
BNN 96.3 96.3 96.3 96.3 2.8941
TNN 96.0 96.0 96.0 96.0 2.9428

NNN MNN WNN BNN TNN
0

2

4

6

8

10

12
11.97

9.19

13.44

9.11 8.87

4.03

3.02

3.91

2.67 2.94

T
im

e
(s

ec
)

Fusion Selection

Figure 8: Time comparison for feature fusion and BCO-based
feature selection across different classifiers

Table 4: Comparison with existing drowning detection methods.

Study Method Accuracy (%)

Chan et al. [39] AlexNet 85.0
Handalage et al. [40] YOLO-based system 85.6
Hasan et al. [41] MobileNet 96.7
Proposed RB3+RB4 + Fusion +

BCO
97.9

is shown in Fig. 7. Table 4 compares the proposed approach
with representative existing methods.

Figure 9: Grad-CAM visualization of the proposed drowning
detection framework.

Grad-CAM highlights discriminative regions used by
CNNs for classification, improving interpretability [73, 74,
75]. The Grad-CAM visualization for the proposed frame-
work is shown in Fig. 9.

5. Conclusion

A deep learning-based method for early drowning detec-
tion has been presented in this paper. Using publicly avail-
able dataset, we trained two customized-CNN. Residual
blocks 3 and 4 were combined into one model to achieve
optimal performance. Binary Chimp Optimization was
employed for feature selection, and 97.9% accuracy was
achived, respectively. Residual block 3 was the best model
out of them all because it had the highest testing and
validation accuracy. The system performed remarkably
well in terms of training time and prediction accuracy com-
pared to other methods. The outcomes of the experiments
demonstrated that the suggested models could identify
drowning incidents in swimming pools with a high degree
of certainty. The recommended technique can be used in a
range of pools and environments, such as fitness centers,
hotels, villas, and schools. This technique can be put in
place and linked with either an automated drowning rescue
system or an alert system. There are substantial practical
implication of this proposed framework. This framework
can effectively play role in early and accurate detection of
drowning subjects quickly, thus significantly reducing the
response time and saving lives. Real time implementation
of this life saving system with existing surveillance infras-
tructure can enhance the safety monitoring both in public
and private pool environments. Presented DL model is
trained on a single data set. However, the efficiency and
reliability of the model can be significantly be validated by
training it on more diverse and large dataset. In this con-
text future research should explore the collection of more
comprehensive dataset from diverse real world and swim-
ming environments including the variations in day light,
crowd density and weather conditions. Briefly this study
lays the foundation of a scalable and reliable drowning
detection system for the real world implementation.
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