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Abstract

Advancements in nanoscale semiconductor technologies, wide-bandgap materials, and emerging 2D devices have
significantly increased the complexity of device characterization, making traditional TCAD simulations and compact
modeling increasingly time-consuming and insufficiently flexible. Physics-Informed Machine Learning (PIML) offers a
promising pathway by integrating physical laws with data-driven modeling to enhance accuracy, interpretability, and
generalization. This paper presents a unified PIML framework for advanced electronic device characterization that embeds
semiconductor transport physics, electrostatic constraints, and compact-model priors directly into neural architectures
and loss functions. The proposed approach leverages hybrid PINN-based solvers, residual-learning compact models,
and uncertainty-aware training to model I-V, C-V, and RF characteristics across nanosheet FETs, GaN HEMTs, and
2D-material THz transistors. Experimental results demonstrate that PIML models reduce prediction error by up to 35%
compared to purely data-driven models and achieve substantially improved physical consistency, particularly in charge
conservation and monotonic device behavior. Moreover, the differentiable structure of the framework enables efficient
inverse design and parameter extraction, significantly accelerating device optimization workflows. Overall, the study
establishes physics-informed ML as a scalable and robust methodology for next-generation electronic device modeling,
bridging the gap between high-fidelity physics solvers and fast, design-oriented surrogate models.
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and emerging two-dimensional (2D) material-based THz
devices exhibit strong electrostatic confinement, quasi-
ballistic transport, self-heating, polarization effects, and
pronounced non-linearities. Accurate modeling of these
phenomena is essential for device optimization, variability
analysis, and circuit-level design, yet it remains compu-
tationally demanding when relying solely on conventional
Technology Computer-Aided Design (TCAD) solvers.

1. Introduction

The continued scaling and diversification of semicon-
ductor technologies have significantly increased the com-
plexity of electronic device characterization. Advanced
architectures such as gate-all-around nanosheet FETs, wide-
bandgap GaN high electron mobility transistors (HEMTS),
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TCAD tools solve coupled partial differential equations
(PDEs), including Poisson’s equation and carrier transport
equations, to provide high-fidelity predictions of internal
fields and terminal characteristics. While physically rigor-
ous, TCAD simulations are computationally expensive and
poorly suited for large-scale design-space exploration, in-
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verse parameter extraction, or real-time optimization loops.
Compact models, on the other hand, offer computational
efficiency and circuit-simulator compatibility but struggle
to capture the complex physics of aggressively scaled and
emerging devices without extensive manual calibration and
technology-specific modifications [7, 9, 15].

Recent advances in ML have enabled data-driven sur-
rogate models for semiconductor devices, significantly re-
ducing simulation cost while achieving high numerical ac-
curacy [14, 19, 22]. Neural-network-based compact models
and TCAD-augmented ML frameworks have demonstrated
success in predicting [-V, C-V, and RF characteristics
across a range of device technologies [17, 18]. However,
purely data-driven approaches often violate physical laws
such as charge conservation and monotonicity, exhibit poor
extrapolation behavior, and lack interpretability.Physics-
Informed Machine Learning (PIML) overcomes these limi-
tations by embedding governing physical principles directly
into the learning process. Physics-Informed Neural Net-
works (PINNs) enforce PDE residuals and boundary condi-
tions during training, ensuring physical consistency while
retaining the flexibility of deep learning [11]. Operator-
learning approaches such as DeepONet further enhance
generalization across parameterized physics problems [12].
In this work, a unified PIML framework is proposed to
bridge the gap between TCAD accuracy and ML efficiency
for next-generation electronic device characterization.

The remainder of this paper is organized as follows.
Section II reviews related work on physics-informed and
machine-learning-based electronic device modeling. Sec-
tion III presents the proposed physics-informed machine
learning framework for advanced device characterization,
including the governing formulations and architectural de-
sign. Section IV describes the experimental setup and
datasets used for model training and evaluation. Section V
discusses the obtained results and performance analysis
across different device technologies. Finally, Section VI
concludes the paper and outlines potential directions for
future research.

2. Related work

Physics-informed and physics-aware machine learning
has rapidly emerged as a powerful paradigm for electronic
device modeling, moving beyond purely data-driven surro-
gates toward models that explicitly embed semiconductor
physics, transport equations, and compact-model struc-
tures. Kim and Shin [1] introduced one of the earliest
dedicated physics-informed neural-network device models
for nanoscale transistors by combining physics-informed
neural networks and operator-learning concepts. Their
framework enforces device-physics constraints during train-
ing and achieves mean absolute percentage errors as low
as 0.12% for interpolation and 0.19% for extrapolation,
demonstrating that embedding partial differential equation
(PDE) residuals and physical priors significantly improves
both accuracy and extrapolative robustness compared with
black-box neural networks.

At the transport-physics level, Li et al. [2] proposed a
physics-informed deep learning framework for solving cou-
pled electron and phonon Boltzmann transport equations

List of acronyms

Acronym Description

ANN Artificial Neural Network

BP Black Phosphorus

BSIM Berkeley  Short-Channel IGFET
Model

C-V Capacitance—Voltage

DC Direct Current

DeepONet Deep Operator Network

GaN Gallium Nitride

HEMT High Electron Mobility Transistor

-V Current—Voltage

ML Machine Learning

NSFET Nanosheet Field-Effect Transistor

PDE Partial Differential Equation

PIML Physics-Informed Machine Learning

PINN Physics-Informed Neural Network

RF Radio Frequency

RMSE Root Mean Square Error

RTN Random Telegraph Noise

S-params Scattering Parameters

TCAD Technology Computer-Aided Design

THz Terahertz

UuQ Uncertainty Quantification

in nanoelectronic systems. By encoding the structure of
the Boltzmann equations and associated boundary condi-
tions into the loss function, their approach enables accurate
prediction of nonequilibrium temperature and energy distri-
butions under ultrafast laser heating. This work illustrates
that PIML can extend beyond terminal-level characteriza-
tion to capture multiphysics processes such as self-heating
and energy dissipation, which are increasingly critical in ad-
vanced CMOS, wide-bandgap power devices, and terahertz
electronics.

For high-frequency and RF components,The authors
of [3] have proposed a physics-informed machine learn-
ing technique for efficient modeling of microwave devices
by learning the mapping from device geometry to modal
equivalent-circuit parameters. Their method integrates neu-
ral networks with analytic eigenvalue extensions derived
from Z-parameter eigen-decomposition, enabling accurate
prediction from sparse frequency samples and improved
generalization to out-of-domain geometries. Complement-
ing this direction, Kim et al. [7] introduced a physics-
augmented neural compact model in which neural network
blocks are embedded within a compact-model framework.
This gray-box strategy preserves SPICE compatibility while
capturing complex non-idealities, motivating hybrid PIML
approaches that combine analytic device models with data-
driven residual learning.

The applicability of physics-aware machine learning to
quantum and strongly mesoscopic devices further demon-
strates the breadth of the paradigm. Craig et al. [4,6]
developed a physics-aware ML pipeline that integrates elec-
trostatic modeling, deep learning, Gaussian random fields,
and Bayesian inference to infer disorder potentials in later-
ally defined quantum-dot devices from transport measure-
ments. Their framework accurately predicts gate-voltage
configurations that generate targeted transport signatures,
effectively bridging the gap between idealized simulations
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and fabricated quantum devices. This capability highlights
the potential of PIML for inverse characterization of hidden
microscopic parameters that cannot be directly measured.

In the power and RF device domain, Wang et al. [5] pro-
posed a physics-guided artificial neural network for p-GaN
gate HEMTs, consisting of separate subnetworks for process
parameters, bias conditions, and physics-based gating rela-
tionships. Trained on TCAD-generated datasets, the model
accurately predicts key device metrics such as threshold
voltage, on-state resistance, and maximum drain current,
supporting process optimization and design—technology co-
optimization. Khusro et al. [10] extended hybrid modeling
strategies for AlGaN/GaN HEMTs by combining physics-
relevant equivalent-circuit extraction with multiple opti-
mized machine learning regressors, achieving mean relative
S-parameter errors below 4% and demonstrating strong
robustness across operating conditions and geometries.

Reliability-oriented PIML approaches have also gained
increasing attention. Varanasi et al. [8] presented a physics-
informed machine learning framework for analyzing oxide
defect—induced random telegraph noise in gate leakage
currents of advanced high-x metal-gate stacks. By incor-
porating defect-physics models into the learning process,
their method enables automated extraction of defect statis-
tics from stress-induced leakage current data. In parallel,
Singhal et al. [9] introduced a physics-aware ANN-based
framework for BSIM-CMG model parameter extraction for
FinFETs, nanosheet, and nanowire transistors, combining
physics-driven initialization with data-driven refinement to
accelerate convergence while preserving physical plausibil-
ity.

Early machine learning efforts in device modeling fo-
cused on physics-inspired neural networks and ANN-based
compact models, demonstrating feasibility but limited
robustness [14,15]. The formal introduction of physics-
informed neural networks enabled direct enforcement of
physical laws through loss functions, revolutionizing data-
efficient modeling of PDE-governed systems [11]. Operator-
learning approaches such as DeepONet further advanced
the field by enabling generalization across continuous pa-
rameter spaces [12].

Hybrid physics-augmented compact models that com-
bine analytical baselines with neural residuals have since
been proposed for nanoscale CMOS and emerging transis-
tors [7,9]. TCAD-augmented convolutional neural network
pipelines have enabled scalable surrogate modeling of multi-
I-V characteristics [17]. For RF and wide-bandgap devices,
physics-guided machine learning approaches incorporating
equivalent-circuit constraints and process awareness have
demonstrated significant accuracy improvements in GaN
HEMT modeling [5,10,21]. Physics-aware machine learning
has also been successfully applied to quantum devices [4,6]
and reliability analysis [8].

Despite these advances, most existing approaches re-
main device-specific and task-specific. A unified frame-
work that simultaneously supports multiphysics consistency,
compact-model augmentation, uncertainty awareness, and
cross-technology generality remains largely unexplored, pro-
viding the primary motivation for the present work.

Figure 1: High-level physics-informed ML pipeline for electronic
device characterization.

3. Physics-informed ML framework for device char-
acterization

3.1. Problem formulation

The characterization task is formulated as a supervised
mapping from device and process parameters, together
with operating biases, to a multi-dimensional vector of
electrical responses. Let p € RM» denote geometric and
process parameters (e.g., gate length, channel thickness,
doping levels), and let v € R represent bias conditions
(e.g., Vas, Vbs, Vs ). The outputs y € R¥v correspond to
measured or simulated characteristics such as DC currents,
capacitances, or S-parameters. The forward characteriza-
tion problem thus aims to learn a parametric model is given
by (1).

for (p,v) =y (1)

In (1), 8 denotes the trainable parameters of the physics-
informed ML (PIML) model.

Data are obtained from heterogeneous sources: (i) high-
fidelity TCAD simulations, (ii) wafer-probe or packaged
device measurements, and (iii) process metrology or vari-
ability characterizations. Let (2) and it denote the ag-
gregate dataset, where y; may itself be a concatenation
of multiple characterization metrics. The PIML model
must interpolate within this dataset while also extrapolat-
ing to unseen (p, v) combinations. In addition, it should
support inverse tasks such as parameter extraction and
performance-constrained design, formulated as (3).

D= {(pi7vi7yi)}£\;1 (2)
137%1 j(fe(pvv)7y*)’ (3)

In (3), y* encodes target performance and J(-) quantifies
the deviation from this target (e.g., a weighted squared
error).

The proposed framework also explicitly acknowledges
that device behavior is governed by underlying field vari-
ables—electrostatic potential ¢(x), carrier densities n(x)
and p(x), and temperature T'(x)—defined over the device
domain Q C R?. Physics-informed subnetworks approxi-
mate these internal fields to respect the governing partial
differential equations (PDEs), while terminal characteris-
tics y are obtained by spatial integration and boundary
operations. This multi-level formulation allows the model
to exploit both microscopic physics and macroscopic device-
level measurements.

3.2. Physics-informed loss construction

The core of the framework is a composite loss function
that blends data fidelity with physics-based regularization.
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Figure 2: Composition of the physics-informed loss function. Icons
may depict data, PDEs, physical constraints, and regularization
terms.

Given training samples (p;, v;,y;) and collocation points
x; € Q) for the PDE constraints, the total loss is given by

(4)-
»C(e) = )\dataﬁdata + APDEEPDE + Aphysﬁphys + )\reg»cre(gv
4

In (4), A\e are non-negative hyperparameters weighting the
contributions of different terms. The data loss enforces
agreement with TCAD and measurement data (5):

N
1
Liata = N E | fo(pi, vi) — yle (5)
i=1

The PDE residual loss enforces consistency with the
semiconductor transport equations for internal fields. Using
a drift—diffusion model, Poisson and continuity equations
can be written as (6)-(8).

TPoisson(X) = V - (e(x) Vg (x))
+ q(po(x) —ne(x) + N = N3)  (6)
rn(x) =V - Jy6(x) — q Re(x) (7)
rp(x) =V - Jpe(x) + q Ro(x) (8)

In (6)-(8), ¢g,ne,pe are neural-network surrogates for po-
tential and carrier densities, J, ¢ and J,¢ are current
densities, and Ry is the recombination rate. The PDE loss
is then written as (9).

M
1
Loo = 72 3 (IIreoisson () I3+ I ()3 + 17 (¢, 13) -
j=1

(9)

The physics constraint loss Lpnys captures global rela-

tionships such as charge conservation and monotonicity.

For example, terminal charge conservation can be enforced
via the (10).

N
1
Echarge = N Z (QG,i + QD,i + QS,i + QB,i)2 (10)
i=1

and monotonicity with respect to Vg can be approximated
by penalizing sign violations of discrete derivatives. These
terms act as soft constraints that bias learning toward
physically admissible solutions, especially in regions with
sparse or noisy data.

: compact_icon. pny
s_;cmpng P,
o
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Figure 3: Hybrid architecture combining a classical compact model
with a physics-informed ML residual.

3.3. Hybrid compact-model-augmented architecture

To maintain compatibility with established circuit de-
sign flows, the framework employs a hybrid architecture
that augments a classical compact model with a learned
correction term. Let fo,(p, V) denote a standard compact
model (e.g., a BSIM- or HiSIM-like formulation) calibrated
via conventional parameter extraction. The hybrid output
is expressed as (11).

y: fcm(pvv)+Af0(pvv) (11)

In (11), Afp is a neural correction that captures complex
effects not fully represented in f.,,, such as self-heating,
quasi-ballistic transport, fringe parasitics, or multi-physics
couplings.

Architecturally, Afg can be realized as a deep fully
connected network, a mixture density network for stochas-
tic behavior, or a small graph neural network that en-
codes structural information about the device layout. The
physics-informed losses in (4) act on both the internal field
surrogates and the final outputs y to ensure that the cor-
rection remains physically meaningful and does not violate
conservation properties inherited from f.,. This formu-
lation allows engineers to view the model as a “compact
model plus systematic residual,” preserving trust built over
decades of compact modeling practice while improving
accuracy.

From an implementation standpoint, the hybrid block
can be exported as a differentiable module and wrapped
into Verilog-A or similar hardware description languages.
During circuit simulation, the compact model computes
baseline currents and charges, while the ML residual is
evaluated as a lightweight numerical correction. This struc-
ture facilitates incremental adoption: legacy design flows
can be retained, with PIML residuals gradually introduced
for selected devices, operating regions, or design corners
where conventional models are known to underperform.

8.4. Uncertainty quantification and active learning

Beyond point predictions, the framework estimates pre-
dictive uncertainty to guide data acquisition and model
deployment. A practical approach is to train an ensemble
of K physics-informed models {fg, }/*_; with different ini-
tializations or bootstrap resampling. For a given (p,v),
the ensemble mean and variance as per (12) and (13). High
variance indicates regions where the model is less certain
and where additional simulations or measurements are most
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Figure 4: Uncertainty-aware active learning loop for data-efficient
device characterization.

valuable.

(12)

N\
Mx

y(p,v))?

Nr—x
Mw

Var[y|(p,v)  ——

(fo.(p,v) — (13)

—1

k=1
This uncertainty information is exploited in an active learn-
ing loop. A candidate pool of (p,v) configurations is
evaluated using the current ensemble, and points with high-
est uncertainty are selected for additional TCAD runs or
experimental characterization. The newly acquired labeled
samples are added to D, and the PIML model is retrained
or fine-tuned. Iterating this process yields a data-efficient
characterization strategy that concentrates expensive data
generation where it most improves model fidelity, rather
than uniformly sampling the design and bias space.

In safety-critical design flows, uncertainty estimates
can also be propagated to higher levels of abstraction.
Device-level predictive intervals can be used to construct
worst-case corners for circuit simulation or to flag operating
conditions where the surrogate model should be replaced by
a full TCAD simulation. Thus, uncertainty quantification
and active learning form a crucial layer on top of the
physics-informed architecture, ensuring trustworthy and
continuously improving device characterization.

4. Experimental setup

The experimental setup is designed to rigorously eval-
uate the proposed Physics-Informed Machine Learning
(PIML) framework across multiple device classes, data
sources, and training conditions. This section details the
device configurations, dataset preparation, model archi-
tectures, and training methodologies. Each subsection
includes the mathematical formulations required for repro-
ducibility and scientific rigor.

4.1. Device classes and dataset construction

4.1.1. Nanosheet FETs (NSFETs)

The first dataset consists of 3-nm technology node
nanosheet FETs, characterized using industry-grade TCAD
tools. Structural parameters such as sheet width Wysg,
sheet height Hyg, gate length Lg, and oxide thickness T,y

are systematically varied within realistic process corners
s (14).
Wys € [10, 20] nm,

Hys € [4,8] nm, Lg € [10,18] nm.

(14)

For each geometry combination, DC bias sweeps are
performed under (15).

Ves €10,1.2) V, Vps €[0,1.2] V, (15)
yielding drain current Ip, gate charge g, and small-signal
parameters. The obtained dataset represents approximately
85,000 I-V/C-V samples, providing dense sampling for
device variability studies. To ensure numerical consistency,
all features are normalized using min—max scaling as (16).

§— ——Tmin (16)

Tmax — Lmin

4.1.2. GaN HEMTs

The second dataset includes GaN HEMT devices de-
signed for high-power RF operation. Both TCAD-generated
and measurement-derived S-parameter datasets are used.
Geometry parameters include barrier thickness T, Al
composition z, and gate length Lg as is given in (17).

x €10.15,0.30], Thar € [15,25] nm, Lg € [80,160] nm
(17)
Small-signal modeling requires extracting Y-parameters

and converting them to S-parameters using (18).

1
Yo-Y), Yo=—=—1I
( 0 )7 0 ZO 3
In (18), Zy = 50 © and I is the identity matrix. The dataset
contains approximately 30,000 full-bias S-parameter sweeps
from 100 MHz to 40 GHz, covering wide operating condi-
tions.

S=Yo+Y)! (18)

4.1.8. 2D-Material THz transistors

The third dataset includes MoSy and Black Phospho-
rus (BP) THz transistors. Since experimental THz data
are sparse, physics-based simulators are used to generate
synthetic but physically accurate THz frequency responses.
Key figures of merit include the transit frequency fr and

maximum oscillation frequency fiax, given by (19) and
(20).

Im
= 19
fr 21C4q (19)
fmax = Im (20)
27 (Cg Ry + CaoRRs)

In (19)-(20), gm, is the transconductance, Cge and Cgq are
gate-related capacitances, and R, R denote gate and
source resistances, respectively.

For each device, geometry parameters such as channel
thickness, dielectric constant, and mobility are randomized
within experimentally plausible ranges. Approximately
12,000 THz response samples are generated, supplemented
by around 600 experimental samples for calibration and
validation.

4.2. Physics-informed ML architecture

4.2.1. Hybrid PINN-compact model framework
The PIML architecture integrates a classical compact
model f.,, with a trainable residual model A fy according

o (21).
7; = fcm(pa 7}) + AfQ(pv U) (21)
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where p denotes geometric/process parameters and v de-
notes the electrical bias vector. The neural component A fy
is implemented as a six-layer fully connected network with
256 neurons per layer and GELU activations.

The physics-informed part of the architecture is based
on the drift—diffusion semiconductor model. The electro-
static potential ¢, electron concentration n, and hole con-
centration p satisfy the (22)-(24).

V- (eVe)=—q(p—n+Np—Na), (22)
V-J,=qR, J,=qu.,nV¢+qD,Vn, (23)
V-J,=—qR, J,=qupVeo—qD,Vp,  (24)

In (22)-(24), € is the permittivity, ¢ is the elementary charge,
Np and N4 are donor and acceptor concentrations, R is
the recombination rate, and p,, pp, Dn, D, are mobilities
and diffusion coefficients.

These governing equations are enforced through a PDE
residual loss evaluated at collocation points {x; }é\f:cl (25).

Ne

Lron = (Irpowson (5) 13 + I (%) 13 + o ()13
j=1
(25)
where 7poisson; Tn, and 7, denote the residuals of (22)-
(24), computed via automatic differentiation of the neural
representations.

4.2.2. Charge conservation and monotonicity constraints

To ensure physical consistency, global device constraints
are incorporated into the training objective. Charge con-
servation across all terminals is enforced by (26) and which
leading to the loss term as (27).

Qa+Qp+Qs+Qp=0 (26)
|Qc + Qp + Qs + Q| (27)

Monotonicity of the drain current Iy with respect to gate
voltage Vs in the operating region of interest is enforced
by penalizing violations of the inequality (28).

charge -

olp
> 0. 2
0Vas — 0 ( 8)

Using automatic differentiation, the derivative is computed
s (29).
Olp  Ofy

2
OVas  OVas (29)
A soft penalty formulation is adopted as (30).
olp
L:mono = ; max (Oa WGS) (30)

The (30) drives the model towards monotonic behavior
without hard constraints.

4.8. Training Pipeline and Optimization Strategy

4.83.1. Loss Function Design

The total loss function combines data fidelity, PDE
consistency, physics constraints, and regularization are
given as (31).

L= /\1£data + >\2£PDE + >\3£phys + /\4£reg7 (31)

In (31), A1, A2, A3, A4 are nonnegative weighting coefficients.
The data loss is defined as (32).

N
Ldata = Z |f0 pzavz yz”§ (32)

In (32), the N denotes the number of data samples. The
term Lphys aggregates Leharge; Lmono, and possibly addi-
tional physics-based penalties.

Regularization is implemented to improve generalization
and smoothness of the learned device characteristics as
given by (33).

Licg = 10113 + [V foll3, (33)

In (33), ||0]|3 is an ¢y penalty on network weights and
V foll3 encourages smooth variation of the predictions
with respect to inputs.

4.8.2. Training configuration

All models are implemented in PyTorch and trained
on an NVIDIA A100 GPU. The AdamW optimizer is used
with an initial learning rate of 10~* and cosine annealing
schedule. The batch size is set to 1024 for data samples,
and N, = 4000 collocation points are sampled per batch
for PDE residual enforcement. Training proceeds for up to
1500 epochs with early stopping based on validation PDE
residual and data loss.

Since physics-informed models are sensitive to the rela-
tive weighting of loss components, a dynamic weight tuning
strategy is adopted. The weights A\ are updated according

o (34):

oL
)\ECHH = )\](c)exp (773Ak> (34)

In (34), n is a small step size and ¢ denotes the training
iteration. This mechanism balances data and physics terms
adaptively during training.

4.8.8. Uncertainty quantification (UQ)

To estimate prediction reliability and enable active
learning, an ensemble of K = 8 independently trained
PIML models is constructed. The predictive mean y and
variance o2 are computed as (35) and (36).
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Table 1: RMSE comparison for NSFET I-V predictions.

Model Linear Saturation Improve
Compact Model — 8.21x1076 1.14x107° -
Pure NN Model ~ 5.63x10~6 7.91x10-6 -
Proposed PIML 3.98x10~6 5.16x106 34-45%

Regions in the (p,v) space exhibiting high predictive
variance are automatically flagged as high-uncertainty zones.
These regions are targeted for additional TCAD simulations
or measurements, forming the basis of an active learning
loop that iteratively refines the model while minimizing
the cost of data generation.

5. Results and discussion

This section presents the quantitative and qualitative
evaluation of the proposed Physics-Informed Machine Learn-
ing (PIML) framework across three representative device
families: (i) nanosheet FETs (NSFETs), (ii) GaN HEMTs,
and (iii) 2D-material THz transistors. The results include
comparisons with classical compact models and purely
data-driven neural networks and are assessed using accu-
racy, physical consistency, generalization behavior, and
computational efficiency metrics.

5.1. NSFET characterization

5.1.1. Prediction accuracy

The physics-informed hybrid model demonstrates signif-
icant improvements in predicting I-V and C-V characteris-
tics over both classical compact models and pure ML base-
lines. As summarized in Table 1, the PIML model reduces
RMSE by over 34.7% for drain current prediction in satura-
tion and by 29.3% in the linear regime. This improvement
stems from incorporating drift—diffusion and electrostatic
constraints via the PINN residual terms, which restrict
the solution space to physically plausible behaviors. The
compact-model-augmented architecture also helps capture
complex non-idealities such as self-heating and mobility
degradation that dominate in the sub-3-nm NSFET regime.

In addition to the overall RMSE reduction, the PIML
model exhibits improved fidelity in bias regions where
strong short-channel effects and quasi-ballistic transport
appear. This region is notoriously difficult to capture
with purely analytical compact models, which typically
rely on simplified assumptions. The data-driven residual
component in the proposed hybrid framework compensates
for such analytical mismatches while the physics-informed
constraints ensure that the learned corrections remain con-
sistent with semiconductor transport laws.

5.1.2. Physical consistency and extrapolation

A key benefit of the proposed approach is its ability to
maintain physical consistency under extrapolation. Fig. 5
illustrates that while the pure neural network produces
non-monotonic distortions when gate length or nanosheet
width fall outside the training range, the PIML-based model
preserves monotonicity and charge conservation constraints.
This behavior is driven by the enforcement of Poisson

TCAD

ure
— ML

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Vs (V)

Figure 5: Predicted and TCAD-measured I-V curves for NSFETs

under extrapolated geometries using compact, pure NN, and proposed
PIML models.

Table 2: S-Parameter prediction error for GaN HEMTs.

Param. Compact Pure NN Proposed
PIML

S11 (dB) 0.92 0.61 0.38

S21 (dB) 1.47 0.95 0.64

S12 (dB) 0.33 0.25 0.19

S22 (dB) 0.86 0.57 0.41

and continuity equation residuals, which act as strong
regularizers. The charge imbalance error for the PIML
model remains below 0.8%, compared to 7-10% for the
pure ML approach.

Furthermore, the proposed framework exhibits smoother
bias dependence, avoiding spurious oscillations in the satu-

ration region that are commonly observed in over-parameterized

neural networks trained without explicit physics priors.
The combination of compact-model backbone and physics-
informed regularization yields a model that not only fits the
data but also generalizes in a manner consistent with device
operation principles, which is crucial for circuit designers
relying on the model across a wide design space.

5.2. GaN HEMT characterization

5.2.1. DC and RF performance prediction

For GaN HEMTs, the PIML model improves both DC
and RF metric accuracy. The DC transfer characteristics
show RMSE improvements of 31-37%, while S-parameter
prediction benefits further due to the physics-driven cou-
pling between electrostatic and transport phenomena. Ta-
ble 2 presents the error metrics for key small-signal parame-
ters. The hybrid model’s ability to combine drift—diffusion-
based constraints with compact-model structure enables
accurate prediction even with sparse measurement data.

The PIML-based predictions more accurately reflect the
bias-dependent interplay between transconductance, output
conductance, and parasitic capacitances, which ultimately
shape the RF gain and stability behavior. In particular, the
learned residuals capture subtle polarization and trapping
effects that are difficult to incorporate analytically in classi-
cal compact models, thereby reducing discrepancies at high
drain and gate biases where self-heating and non-linearities
become prominent.
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Figure 6: Measured vs. predicted gain—frequency characteristics for
GaN HEMTs using compact, pure NN, and proposed PIML models.

5.2.2. Robustness and high-frequency behavior

Fig. 6 compares the predicted and measured gain—frequency
dispersion curves. The compact-model baseline exhibits
significant deviations at high frequencies due to its limited
modeling of parasitic and polarization effects. The pure
ML model captures local trends but violates smoothness
and physical constraints at high drain biases. In contrast,
the proposed PIML approach maintains consistent gain
roll-off behavior, exhibiting less than 4% maximum devia-
tion across the spectrum. This performance is attributed
to the embedded current-continuity constraints and physi-
cally structured residuals that enforce correct asymptotic
behavior.

Additionally, the PIML framework demonstrates ro-
bustness under parameter variations that emulate process
spread. When barrier thickness and Al composition are
perturbed within realistic manufacturing tolerances, the
PIML model continues to produce smooth and physically
plausible variations in gain and stability factors. This is
in contrast to purely data-driven models, which occasion-
ally yield non-physical resonances or unstable gain peaks
outside the training distribution. Such robustness is essen-
tial when the model is deployed in industrial design flows
that must accommodate process variability and reliability
constraints.

5.3. 2D-Material THz transistor

5.3.1. High-frequency THz response prediction

The PIML framework delivers substantial improvements
in predicting THz-band characteristics, where classical
compact models typically fail due to strong quantum-
confinement and non-local transport effects. As shown
in Table 3, the PIML model reduces RMSE for current and
transconductance by 40-48%, outperforming both analyti-
cal and purely data-driven approaches. The PINN archi-
tecture, guided by modified Boltzmann transport residuals,
captures the nonlinear carrier dynamics characteristic of
2D-material devices operating in the THz regime.

These improvements are particularly evident in bias
regions where velocity overshoot, quasi-ballistic transport,
and strong field effects dominate. Classical compact models,
which assume drift-diffusion-like behavior, systematically
underestimate fr and fp.x in these regimes. Purely data-
driven networks can learn such nonlinearities from data
but often overfit and produce non-smooth or non-causal
frequency responses. By contrast, the PIML framework

Table 3: RMSE comparison for 2D-Material THz transistor charac-
teristics.

Metric Compact Pure NN PIML
Ip RMSE 1.25e° 8.31e~ 4.31e76
gm RMSE 3.91e™4 2.57e 4 1.46e 4
St Error (%) 11.8 7.3 4.2
fmax Error (%) 15.4 9.8 5.7

Response
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&
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Figure 7: Prediction mean and uncertainty envelope for 2D THz
transistor response using an ensemble of PIML models.

constrains the learned mapping to obey the underlying
transport equations and boundary conditions, leading to
more reliable and physically grounded predictions.

5.8.2. Variability modeling and uncertainty quantification

Fig. 7 shows uncertainty bounds estimated using an en-
semble of PIML models. Regions of high predictive variance
correspond to bias points where strong velocity-overshoot
and ballistic effects dominate. This information is critical
for guiding active learning, enabling selective TCAD simu-
lation in uncertainty hot-spots. Unlike pure ML models,
which exhibit instability under stochastic device variations,
the PIML uncertainty envelope remains smooth and physi-
cally plausible due to embedded physical constraints and
prior-driven regularization.

From a variability modeling perspective, the PIML
framework captures both the mean behavior and the spread
induced by process-induced fluctuations in channel thick-
ness, contact resistance, and material quality. The resulting
uncertainty quantification provides designers with confi-
dence intervals for THz performance metrics, enabling risk-
aware design decisions. Moreover, by iteratively enriching
the training set using uncertainty-aware active learning,
the framework can progressively reduce predictive variance
in critical operating regions while containing the overall
simulation cost.

6. Conclusion

This work presented a unified Physics-Informed Ma-
chine Learning framework for advanced electronic device
characterization, integrating semiconductor transport physics,
compact-model priors, and data-driven learning into a
scalable, high-fidelity modeling pipeline. Through com-
prehensive evaluations on nanosheet FETs, GaN HEMTs,
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and 2D-material THz transistors, the proposed approach
demonstrated notable improvements in prediction accuracy,
physical consistency, extrapolation capability, and robust-
ness to sparse training data when compared with both
classical compact models and purely neural network—based
models. The inclusion of PDE residuals, charge—current
conservation constraints, and hybrid residual-learning struc-
tures enabled the framework to maintain physically valid
behavior across wide geometry and bias spaces, while un-
certainty quantification facilitated reliability assessment
and active data acquisition. These results highlight the
potential of PIML-driven device modeling as a powerful en-
abler for next-generation technology development, offering
a computationally efficient and physics-faithful alternative
to traditional TCAD-heavy workflows and opening new
opportunities for inverse design, model-card generation,
and intelligent process optimization.
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