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Abstract

The rapid growth of digital payment ecosystems, which include mobile wallets, UPI platforms, online banking channels,
and merchant-integrated gateways, has led to a big rise in both the number of transactions and the complexity of financial
fraud. Standard systems for finding fraud mostly use rule-based methods or independent transaction-level classifiers.
These systems can’t pick up on the complicated relational and temporal dependencies that are common in modern
fraud patterns. This research presents a Graph Neural Network (GNN)-based real-time fraud detection framework that
conceptualizes the digital payment ecosystem as a dynamic, multi-relational graph consisting of users, devices, merchants,
IP addresses, and transactional interactions. The framework combines Relational Graph Convolutional Networks, Graph
Attention Networks, and Temporal Graph Networks to learn behavioral patterns that change over time, in context, and
in structure. A hybrid supervised—unsupervised scoring module is used to figure out how likely fraud is. This module can
find both known and new types of attacks. A lot of tests on big synthetic payment datasets show that the proposed
model does much better than traditional machine learning and deep learning baselines in terms of AUC-ROC, precision,
and Fl-score. It also has an inference latency of less than 50 ms, which makes it good for real-time use. The results show
that GNN-based methods are effective for next-generation financial systems that need to be safe, scalable, and smart
when it comes to stopping fraud.
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or well-structured environments, they struggle in dynamic
and large-scale settings where fraud patterns evolve rapidly.
In streaming financial systems, additional challenges such
as concept drift and delayed labeling further degrade model
effectiveness [2], [13].

A key limitation of transaction-centric models is their
inability to capture coordinated and relational fraud be-
haviors. Fraudulent activities often arise through complex
interactions such as synthetic identity creation, shared
devices, merchant collusion, and bot-driven transaction

1. Introduction

The rapid global adoption of digital payment ecosys-
tems—including mobile wallets, instant payment interfaces,
online banking gateways, and merchant-integrated trans-
action services—has fundamentally transformed modern
financial systems by enabling real-time, high-volume mon-
etary exchanges. As transaction throughput continues to
grow, financial platforms face escalating challenges related
to security, transparency, and user trust. Despite advances

in authentication, encryption, and regulatory compliance,
financial fraud remains a persistent and evolving threat [1],
[2].

Traditional fraud detection systems are predominantly
built on rule-based mechanisms or transaction-level ma-
chine learning classifiers such as logistic regression, decision
trees, and cost-sensitive models [3], [4], [15]. While these
approaches demonstrate reasonable performance in static
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bursts spanning multiple users, accounts, and platforms
[5]. Treating transactions independently ignores these in-
terdependencies, resulting in reduced detection accuracy
and vulnerability to emerging attack strategies [6], [9].
Graph-based learning has emerged as a powerful paradigm

for modeling such relational structures. By representing
users, devices, merchants, IP addresses, and transactions
as nodes and edges in heterogeneous graphs, these methods
enable the discovery of hidden dependencies and collec-
tive behavioral patterns. When combined with temporal
modeling, graph-based approaches offer strong potential
for early and accurate fraud detection in evolving payment
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List of Acronyms

Acronym Expansion

ROC Receiver Operating Characteristic
API Application Programming Interface
CNP Card-Not-Present

DEA Data Envelopment Analysis

DNN Deep Neural Network

DoW Day-of-Week

FPS Frames Per Second

GAT Graph Attention Network

GNN Graph Neural Network

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

IP Internet Protocol

KPI Key Performance Indicator

LR Logistic Regression

LSTM Long Short-Term Memory

MCC Merchant Category Code

ML Machine Learning

MLP Multi-Layer Perceptron

OTP One-Time Password

P2P Peer-to-Peer

P2M Peer-to-Merchant

R-GCN Relational Graph Convolutional Network
ReLU Rectified Linear Unit

ROC Receiver Operating Characteristic
SDG Sustainable Development Goal
SoA State-of-the-Art

TGN Temporal Graph Network

TPR True Positive Rate

UPI Unified Payments Interface

XGB Extreme Gradient Boosting (XGBoost)

ecosystems. Motivated by these observations, this work
proposes a unified graph neural network framework for real-
time fraud detection, integrating relational and temporal
learning to address the limitations of existing systems.

2. Related Work

Early research in financial fraud detection focused on
statistical learning and classical machine learning tech-
niques, including transaction aggregation strategies [3],
cost-sensitive decision trees [4], and bespoke classifiers tai-
lored to specific fraud scenarios [15]. Although effective in
controlled environments, these methods generally fail to
generalize under high-dimensional, streaming, and adver-
sarial conditions [2], [13].

To overcome these limitations, graph-based anomaly
detection methods have been explored to model relational
dependencies among entities involved in fraudulent activi-
ties. Surveys and foundational studies highlight the effec-
tiveness of graph representations for capturing coordinated

and structural anomalies in complex systems [6],[5]. These
insights have motivated the application of graph learning
techniques in financial fraud contexts [9].

The GNNs have significantly advanced representation
learning on graph-structured data. Seminal models such
as GCN [7] and GraphSAGE [8] introduced scalable neigh-
borhood aggregation mechanisms. Extensions such as Re-
lational GCNs (R-GCN) [10] enable learning over hetero-
geneous and multi-relational graphs, while Graph Atten-
tion Networks (GAT) [11] improve expressiveness through
attention-based neighbor weighting.

Recent work has further incorporated temporal dynam-
ics into graph learning. Temporal Graph Networks (TGN)
[12] and inductive temporal representation learning ap-
proaches [18] allow models to capture evolving interaction
patterns over time, which is critical for fraud detection in
live payment systems. Building upon these foundations,
several studies have proposed GNN-based fraud detection
frameworks capable of handling camouflaged and adaptive
attackers [16], as well as real-time, large-scale deployment
scenarios [17].

Despite these advances, existing solutions often focus on
isolated aspects of relational or temporal modeling and lack
unified architectures optimized for low-latency, real-time
inference. This study addresses these gaps by integrating
R-GCN, GAT, and TGN into a single, scalable framework
tailored for modern digital payment ecosystems.

3. Methodology

The proposed framework integrates heterogeneous graph
construction, a hybrid temporal-relational GNN architec-
ture, and a real-time inference engine tailored for digital
payment ecosystems. This section details the methodology
in three major parts: (i) dynamic transaction graph model-
ing, (ii) hybrid temporal-relational GNN architecture, and
(iii) fraud scoring and real-time detection. Each compo-
nent is designed to capture the rich relational structure
of financial entities, temporal evolution of user behaviors,
and strict latency constraints of production-grade payment
gateways.

3.1. Dynamic transaction graph modeling

Digital payment ecosystems inherently form intercon-
nected structures involving users, devices, merchants, IP
addresses, bank accounts, and geographic locations. To
systematically capture these relationships, we represent the
ecosystem as a time-evolving heterogeneous graph as (1).

Gt = (‘/taEhRVaRE) (]-)

In (1), V; denotes the set of nodes observed up to time ¢,
FE; is the set of timestamped edges, Ry denotes node types,
and Rp denotes edge relation types. Each node v; € V;
corresponds to an entity category such as (2).

(2)

User, Device, Merchant,
Vs
! IP, BankAccount, Location

For each transaction between entities v; and v; occur-

ring at time ¢, a temporal edge eﬁj € FE; is instantiated
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with a feature vector is given by (3).

‘ amount, timestamp, MCC, device id, 3)
X, =

K geo_tag, velocity features

In (3), the components capture transaction amount, mer-
chant category code, device identifier, coarse geolocation,
and short-term statistics such as transaction count and
cumulative spend over recent time windows. As new trans-
actions arrive, the graph is updated incrementally according
to (4).

Gf+1 = (Vt @] {'Uk} Et U {€t+1} RV7 RE) (4)

In (4), a new node vy, is added if a previously unseen entity
appears in the stream.

The heterogeneous structure of G; allows the model to
represent complex fraud phenomena such as device sharing
across multiple user accounts, repeated use of suspicious IP
subnets, and coordinated merchant collusion. By explicitly
encoding these patterns as graph topologies, the down-
stream GNN can leverage higher-order neighborhoods and
multi-hop dependencies that are inaccessible to transaction-
isolated classifiers.

Figure 1: Representation of a dynamic heterogeneous graph for
digital payment ecosystem.

A schematic of the heterogeneous transaction graph is
illustrated in Figure 1. Users, devices, merchants, and IP
nodes are connected via typed edges indicating transaction,
binding, access, and routing relationships. Such a represen-
tation lays the foundation for relational message passing
and temporal reasoning.

3.2. Hybrid temporal-relational GNN architecture

To effectively exploit the multi-relational and temporal
structure of Gy, the proposed framework employs a hybrid
GNN architecture composed of three key components: a R-
GCN backbone, a GAT module, and a TGN memory layer.
This design aims to simultaneously capture relation-specific
semantics, neighborhood importance, and time-evolving
behaviors inherent in digital payment activities.

The relational message passing mechanism of the R-
GCN component is defined as (4).

DS

r€RE jEN,-(7)

h£z+1) _ W(l)h(l) + W(l)h() (5)

17

I (5), h(l) denotes the embedding of node v; at layer I,
N(7) is the set of neighbors of 7 under relation type r € RE,

,E ) are relation-specific transformation matrices, W( )5

a self-loop transformation, ¢; , is a normalization constant
and o(+) is a nonlinear activation function. This relational
aggregation enables the model to distinguish, for example,
between edges representing financial transactions and those
representing device bindings or login events.

On top of the relational backbone, a GAT module is
applied to learn attention weights over neighbors, reflecting
the relative importance of different connections for fraud
risk assessment. The attention coefficient between nodes i
and j is computed as (6).

exp (LeakyReLU(a' [Wh; || Wh;]))
D_keN (i) EXP (LeakyReLU(aT [Wh, | Why]))

aij =

In (6), W is a shared linear projection, a is a learnable
attention vector, and || denotes vector concatenation. The
resulting attention coefficients o;; highlight, for instance,
devices reused across multiple accounts or merchants with
anomalously dense transaction connectivity.

To incorporate temporal dependencies, the framework
adopts a TGN-style memory module that maintains time-
dependent node states. For an interaction (7,7) at time ¢,
a message is first generated as (7).

mi(t) = (ﬁ(ng, hi(t_)’ hj (t_))v (7)
In (7), ¢(-) is a learnable message function and h;(¢t™)

denotes the node state of v; immediately prior to time ¢.
The memory state is then updated using a GRU (8).

hl(t) = GRU(hz (t_), m; (t)) (8)

R-GCN Layer(s)

[T GN Temporal Memory}

~

{Final Node Embeddings}

Figure 2: Hybrid temporal-relational GNN architecture.

The overall hybrid architecture—comprising R-GCN
layers, GAT modules, and TGN memory updates—is illus-
trated in Figure 2. Relational convolution first aggregates
typed neighborhood information, attention emphasizes crit-
ical neighbors, and temporal updates track the evolution
of node states over time.



Penaganti. Journal of Computing and Data Technology 02 (2026) 91-97 94

3.3. Fraud scoring and real-time detection

The final node embeddings produced by the hybrid
GNN architecture are consumed by a fraud scoring module
that combines supervised classification with anomaly-based
reconstruction. For each transaction or associated entity
node v;, the binary fraud probability is computed via a
logistic regression head (9).

9; = o(w/ h; +b.) 9)

In (9), h; is the final embedding, w,. and b, are learnable
parameters, and o(-) denotes the sigmoid function. This
supervised head is trained using labeled fraud /non-fraud
instances where available.

To complement the supervised signal and enhance ro-
bustness to label sparsity or drift, an anomaly scoring head
estimates reconstruction-based deviation. A reconstructed
embedding h; is produced by a lightweight decoder, and
the anomaly score is defined as expreesed by (10).

The final fraud score F; fuses both components can be
written as (11).

In (11), A € [0,1] is a tunable parameter that balances
supervised classification and unsupervised anomaly detec-
tion. High values of F; indicate either a strong supervised
prediction of fraud, a high reconstruction error, or both.

In production environments, the scoring module oper-
ates within a micro-batch streaming pipeline designed to
satisfy stringent latency budgets. Incoming transactions
are grouped into micro-batches with small time windows
(e.g., tens of milliseconds), and the associated nodes and
edges are used to update the graph state and TGN memory.
Neighbor sampling, pre-cached embeddings, and batched
GNN inference on GPU are exploited to minimize recom-
putation. This yields end-to-end decision times well below
100 ms, which is acceptable for real-time authorization
workflows in typical digital payment platforms.

Figure 3 summarizes the real-time detection pipeline.
Its shows transaction ingestion, streaming preprocessing,
dynamic graph construction with temporal memory, hybrid
GNN inference, and fraud decisioning under low-latency
constraints. Raw transaction events are first ingested and
used to update the dynamic graph and node memory. The
hybrid GNN then performs forward propagation to obtain
up-to-date embeddings, which are fed into the fraud scoring
module. The resulting scores are finally passed to the
decision engine, which may trigger transaction blocking,
step-up authentication, or manual review depending on
configurable thresholds.

4. Execution

4.1. Dataset description and pre-processing

The proposed graph neural network—based fraud de-
tection framework is evaluated on a large-scale, industry-
inspired digital payment dataset that emulates modern

payment ecosystems, including mobile wallets, UPI-like
peer-to-peer transfers, card-not-present e-commerce trans-
actions, and merchant settlements. The dataset contains ap-
proximately five million transactions spanning six months,
with each record comprising transaction identifiers, source
and destination entities, device and IP information, mer-
chant category codes, timestamps, amounts, and coarse
geo-location features. Binary labels indicate fraudulent or
legitimate activity based on injected fraud scenarios and
rule-based ground truth.

The dataset includes heterogeneous entity types reflect-
ing realistic financial infrastructures: around 350,000 users,
90,000 devices, 60,000 merchants, and 400,000 IP addresses,
along with auxiliary synthetic entities such as card tokens
and bank accounts. Fraud patterns are designed to mirror
real-world threats, including account takeover, device shar-
ing, collusive merchants, velocity-based fraud, and location
inconsistency. These scenarios require modeling multi-hop
relational dependencies rather than isolated transactions.

Preprocessing consists of numeric normalization, cate-
gorical encoding, and temporal feature engineering. Trans-
action amounts are standardized or log-transformed to han-
dle skewed distributions, while categorical attributes are
encoded via one-hot or embedding representations. Tem-
poral features such as time-of-day and day-of-week are
mapped to cyclical sine—cosine encodings. Transactions
with missing or inconsistent attributes are conservatively
imputed or removed when failing integrity checks.

To emulate streaming conditions, transactions are chrono-
logically ordered and split into training (60%), validation
(20%), and testing (20%) segments, preventing temporal
leakage. Fraud prevalence is maintained at 2-3% to re-
flect operational imbalance. Class skew is mitigated using
class-weighted loss functions and controlled undersampling
during training.

4.2. Graph construction and feature engineering

A dynamic heterogeneous transaction graph Gy = (V;, E;)
is constructed, where nodes represent users, devices, mer-
chants, IP addresses, and accounts, and edges encode inter-
actions such as transactions, device bindings, and repeated
merchant usage. Each edge is timestamped and enriched
with attributes including transaction amount, channel type,
and velocity indicators. Distinct edge types enable rela-
tional reasoning through relational GNN layers.

Feature engineering is performed at both node and edge
levels. Node features capture intrinsic attributes and aggre-
gated behavioral statistics, such as historical transaction
summaries for users, device sharing patterns, and merchant
dispersion metrics. Edge features encode local context,
including recency, deviation from user baselines, and risk
indicators like device-location mismatches.

The graph is incrementally updated using an append-
only strategy as new transactions arrive. For each transac-
tion at time ¢, a localized k-hop ego-network is extracted
around the involved entities and used as input to the GNN.
Lightweight temporal decay is applied during neighborhood
sampling to prioritize recent interactions while bounding
computational cost. Structural augmentations such as de-
gree statistics and precomputed centrality approximations
are incorporated to capture emerging hubs and anomalous
connectivity patterns.
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Figure 3: Real-time inference pipeline integrating the GNN model with graph context retrieval and downstream decision logic.

4.8. Model configuration and training protocol

The framework employs a hybrid GNN architecture
integrating relational graph convolution (R-GCN), graph
attention (GAT), and temporal graph network (TGN) com-
ponents. Initial node features are projected into a 128-
dimensional latent space via type-specific linear layers.
Two stacked R-GCN layers capture multi-relational de-
pendencies, followed by a GAT layer that assigns adaptive
importance to neighboring nodes.

Temporal dynamics are modeled using a TGN-style
memory module, where node states are updated through
GRU-based message aggregation upon each interaction.
The final node representations are obtained by fusing at-
tention outputs with updated temporal memories through
a gated mechanism.

The detection head consists of a supervised binary clas-
sifier and an auxiliary anomaly scoring module. The classi-
fier is implemented as a two-layer MLP, while the anomaly
module computes reconstruction-based residuals. Training
minimizes a weighted combination of binary cross-entropy
and reconstruction losses with Ly regularization.

Optimization is performed using Adam with an ini-
tial learning rate of 10™2 and cosine annealing. Mini-
batches are constructed by sampling transaction-centered
ego-networks (up to 2 hops, 10 neighbors per hop). Early
stopping is applied based on validation AUC-ROC and
Fl-score. Mixed-precision training is enabled to reduce
memory usage and accelerate GPU execution.

4.4. Baseline models and evaluation metrics

The proposed framework is compared against represen-
tative baselines, including logistic regression and XGBoost
trained on transaction-level features, as well as deep learn-
ing baselines such as LSTM-based sequence models and
feed-forward DNNs operating on aggregated profiles. Base-
lines receive identical feature inputs but lack explicit graph
structure.

Evaluation employs both threshold-independent and
threshold-dependent metrics. AUC-ROC serves as the
primary metric, complemented by average precision, Pre-
cision@QK, and F1l-score at operational false-positive rates.
Deployment-oriented metrics, including inference latency
and memory consumption, are also measured. The frame-
work targets sub-50 ms per-transaction latency under stream-
ing conditions.

4.5. Real-time inference and system integration

An end-to-end real-time inference pipeline is constructed
to emulate production deployment. Incoming transactions

are first filtered by lightweight rule-based checks, then
enriched with contextual information retrieved from an
in-memory graph store. Localized computation graphs are
built on-the-fly and passed through the trained GNN to
generate fraud probabilities and anomaly scores.

Caching strategies are employed to reuse recently ac-
cessed node embeddings and neighborhoods, significantly re-
ducing redundant computation under bursty traffic. Fraud
scores are forwarded to a decision engine that combines
model outputs with business rules to determine final ac-
tions. For high-risk cases, explanatory signals derived from
attention weights are logged for audit and investigation.

Real-time performance is evaluated by replaying trans-
action streams at multiple speeds (1x, 5x, and 10x real
time). Latency is measured across graph retrieval, GNN
inference, and decisioning stages. Stress tests confirm that
the system sustains high throughput while maintaining la-
tency within operational bounds, demonstrating readiness
for deployment in large-scale digital payment infrastruc-
tures.

5. Results and Discussion

The performance evaluation of the proposed GNN-based
real-time fraud detection framework demonstrates its supe-
riority over conventional machine learning and deep learn-
ing models. Table 1 provides a comparative analysis of
AUC-ROC, F1-score, Precision@1000, and inference latency
across several baseline models including Logistic Regres-
sion, XGBoost, LSTM, GAT, and TGN. The proposed
hybrid GNN achieves the highest AUC-ROC of 0.96 and
an Fl-score of 0.89, indicating its effectiveness in capturing
complex relational dependencies and dynamic behavioral
patterns inherent to digital payment ecosystems. These
results validate the advantage of integrating relational mes-
sage passing with temporal graph memory, which tradi-
tional models fail to utilize.

The ROC curve plots shown in Figure 4 further illus-
trate the superior discriminative capability of the proposed
architecture. The hybrid GNN maintains a noticeably
higher true positive rate at relatively low false positive
regions compared to LSTM and XGBoost models, reflect-
ing its ability to finely discriminate between benign and
fraudulent behavior. For financial applications, achieving
high TPR with minimal false alarms is essential to avoid
customer inconvenience while maintaining strong fraud
mitigation, thereby highlighting the practical suitability of
the proposed approach for real-world deployment.
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Table 1: Comparative performance of fraud detection models.

Model AUC F1 P@1000 Latency (ms)
Logistic Regression 0.71 0.58 0.43 1.2
XGBoost 0.84 0.71 0.59 4.5
LSTM 0.86 0.73 0.62 12.1
GAT 0.91 0.78 0.72 21.8
TGN 0.93 0.81 0.74 32.5
Proposed GNN 0.96 0.89 0.83 47.9
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Figure 4: ROC curves comparing proposed GNN with baseline
models.

In addition to quantitative gains, qualitative inter-
pretability is ensured through node-level and edge-level
attention mechanisms. The attention heatmap in Figure
5 highlights key behavioral patterns such as abnormal de-
vice reuse, high-velocity transaction bursts, and suspicious
merchant switching, all of which receive elevated attention
scores. These patterns align with domain-specific fraud
indicators and provide financial analysts with transparent
insights for subsequent investigations and regulatory com-
pliance. The interpretability feature thus enhances trust in
automated fraud detection systems and facilitates smoother
integration into existing financial workflows.
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Figure 5: Attention heatmap showing high-impact nodes
influencing fraud decisions.

Inference latency plays a crucial role in real-time fi-
nancial systems where transactions require sub-100 ms
processing. Despite the increased architectural complexity,
the proposed GNN maintains an average latency of 47.9
ms, satisfying real-time processing constraints. This per-
formance is enabled by micro-batch streaming, optimized

neighbor sampling, and efficient temporal memory updates.
Compared to heavier models like TGN or sequential LSTM
architectures, the proposed framework exhibits an optimal
balance between computational efficiency and detection
accuracy.

6. Conclusion

This study presented GNN-based framework for real-
time financial fraud detection within digital payment ecosys-
tems, effectively integrating multi-relational graph model-
ing, temporal representation learning, and attention-driven
interpretability. The proposed hybrid architecture out-
performed conventional machine learning, sequential deep
learning, and standalone graph models across multiple
performance metrics, demonstrating its strong capability
to capture complex behavioral dependencies and evolving
fraud patterns. Empirical analyses showed that the sys-
tem achieves high detection accuracy while maintaining
sub-100 ms latency, meeting the stringent requirements of
large-scale financial transaction pipelines. Moreover, the
inclusion of interpretable attention mechanisms strengthens
operational transparency and supports regulatory compli-
ance, enabling financial institutions to investigate fraud
with greater confidence. Overall, the findings highlight the
potential of graph-driven Al systems as a robust and scal-
able solution for combating sophisticated fraud in modern
digital payment infrastructures.
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