Journal of Computing and Data Technology

Vol. 01, No. 01, June 2025, pp. 19-39. Compotog and Dot Technlogs
DOI: https://doi.org/10.71426/jcdt.v1.il.pp19-39

RRISH

SCIENTIFIC PUBLICATION

Homepage: https://review.journal-of-modern-technology.com/index.php/jedt/index

RRISH

Journal of

Artificial Intelligence in Carbon Trading: Enhancing Market
Efficiency and Risk Management

Mohammad Parhamfar', Aykut Fatih Giiven?, Anna Pinnarelli’, Pasquale Vizza®*, Alireza Soleimani’

"Independence Researcher and Consultant in Electrical and Renewable Energy, Isfahan, Iran. Email:
drparhamfar@gmail.com , ORCID: https://orcid.org/0000-0002-3442-8270
2Department of Electrical and Electronics Engineering, Engineering Faculty, Yalova University, 77200 Yalova,
Tiirkiye, Email: afatih.guven@yalova.edu.tr , ORCID: https://orcid.org/0000-0002-1071-9700

3Department of Mechanical, Energy and Management Engineering — DIMEG, University of Calabria, Rende 87036,
Italy, Email: anna.pinnarelli@unical.it , ORCID: https://orcid.org/0000-0001-6720-9894

“Department of Mechanical, Energy and Management Engineering — DIMEG, University of Calabria, Rende 87036,
Italy, Email: pasquale.vizza@unical.it , ORCID: https://orcid.org/0000-0001-7864-8905

SDepartment of Mechanical, Energy and Management Engineering — DIMEG, University of Calabria, Rende 87036,
Italy, Email: alireza.soleimani@unical.it , ORCID: https://orcid.org/0000-0002-9081-6630

Article Info

ABSTRACT

Article history:

Received: April 10,2025
Revised: May 28, 2025
Accepted: June 10, 2025
First Online: June 30, 2025

Keywords:

Artificial Intelligence
Machine Learning
Deep Learning
Carbon emissions
Smart Trading
Market Efficiency

Carbon trading is a market-based technique to decrease greenhouse gas
(GHG) emissions through the sale and purchase of carbon offsets.
Incorporating artificial intelligence (AI) into carbon trading can alter the
industry by improving information processing, statistical modeling, and trade
automation. This paper presents an extensive structure for Al-driven carbon
trading that considers critical aspects such as carbon trading volume and
pricing to maximize productivity and sustainability. The study assesses
numerous Al and machine learning (ML) theories, including their use in cost
prediction, real-time market forecasting, and financial risk assessment. The
main results show that Al integration increases market transparency, lowers
fraud, and promotes informed decision-making, all of which helps to
establish an environmentally friendly, effective, and adaptable carbon
market. Furthermore, this work underscores the role of Al in advancing
carbon-neutral economies by fostering innovation in emissions monitoring
and reporting. These advancements highlight Al's critical contribution to
achieving global climate objectives and addressing the urgent challenges
posed by climate change.
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1. INTRODUCTION

The carbon trading sector has been significantly influenced by the incorporation of Al, which has brought forth
innovative solutions to the pressing issues of climate change and the degradation of the environment. Trading carbon
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creates lower emissions with a market-based strategy of greenhouse gases by buying and selling authorizations to
produce carbon dioxide. Al technologies are crucial for making the process more cost-effective, accurate, and
transparent [1]-[3]. An essential part of incorporating Al into carbon trading is predictive analytics that use
ML techniques. Through the analysis of market patterns, historical information, and environmental variables, these
algorithms can forecast future carbon prices. Market participants can use the predictive ability to limit risks, make
educated choices, and strategically organize their carbon trading activity. To help governments and businesses set
realistic and achievable carbon reduction goals, Al-driven analytics can also provide useful information on emission
patterns [4]-[7]. Al has also significantly contributed to establishing a market for carbon trading. To reduce the
likelihood of fraud and preserve the validity of environmental credits, Al collaborates to ensure safe and transparent
operations. The verification and validation process can be automated and accelerated with the use of Al-powered
smart contracts, which can increase the accessibility and efficiency of participants [8], [9].

The accuracy of carbon counting is enhanced when credits are distributed or withdrawn according to verified
emissions data from this real-time monitoring. Algorithms powered by Al that can detect potential non-compliance
may further bolster the legitimacy of carbon exchange. By integrating Al into carbon trading, new financial products
can be easier to create. Al algorithms create new investment opportunities by assessing the financial risks associated
with carbon expenditures. Carbon trading has attracted more investors, resulting in a lively and ever-changing market
[10]-[14]. A new era of efficiency, transparency, and innovation could be dawning due to the adoption of Al, which
is reshaping the carbon trading industry. As the world steps up its efforts to combat climate change, Al will keep
playing a critical role in maximizing carbon markets, promoting moral behavior, and, in the long run, contributing
to a future that is both resilient and ecologically benign [15]-[17]. Carbon and carbon emissions trading systems are
the focus of this review study, which examines several models for Al integration with the goals of improving cost
prediction and optimizing price. It explores the use of several ML and deep learning (DL) algorithms to predict the
behavior of real-time carbon markets across different regions.

Al and ML are significant in carbon trading and markets as they enhance data analysis, predict market patterns,
and detect inefficiency. They can manage vast volumes of data from ecological indicators, economic trends, and
legislative regulations, leading to more accurate carbon pricing and risk assessment. Al-powered systems also
enhance precision and transparency, reducing fraud and boosting trust in carbon credit authentication. These
developments can help close the research gap by improving decision-making, strengthening trading procedures, and
encouraging the development of more ever-changing, effective, and scalable climate change markets. Figure 1
illustrates the methodology employed in this study. The figure is divided into key stages that demonstrate the flow
of processes and their interconnections. Initially, data acquisition is emphasized, where real-time and historical data
on carbon emissions, trading volumes, and prices are collected from diverse sources, including IoT sensors, satellite
imagery, and market databases. This data is then processed and fed into the Al-driven analytics stage, where machine
learning models analyze trends, predict market behaviors, and optimize trading strategies. The framework also
highlights a decision-making layer, where predictive insights from the analytics stage guide policymakers, traders,
and other stakeholders in making informed decisions about pricing, risk assessment, and emissions reduction goals.
Finally, the execution phase integrates these decisions into actionable steps, such as automated transactions, carbon
credit allocation, and system monitoring for compliance and transparency. This comprehensive structure underscores
how Al technologies streamline each stage, fostering efficiency, accuracy, and scalability in carbon trading systems.
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Figure 1. Strategy used in this work.
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2. CARBON TRADING

Carbon trading, also known as emission trading, is a market-based strategy aimed at reducing greenhouse gas
emissions. In this system, businesses are granted permits allowing them to emit a specific amount of CO.. Companies
that exceed their emissions quota must purchase additional credits from others with surplus allowances. This
mechanism incentivizes emission reductions and promotes environmentally friendly practices [18]- [20].

Reference [89], which focuses on smart contracts, green energy operations, and carbon trading, explores
blockchain-based solutions for carbon markets. It also discusses the relevance of game theory, artificial intelligence
(AI), and cryptocurrencies in improving the transparency and efficiency of these systems.

The expansion of carbon trading markets emphasizes support for companies and investors involved in carbon-
reduction technologies and green innovations such as renewable energy projects, energy-efficient infrastructures,
and emission reduction initiatives. This growth opens new avenues for sustainable financial investments and
technological advancement.
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Figure 2. Estimated market size for carbon credits (2023-2033).

Figure 2 presents the projected growth of the carbon credit market between 2023 to 2033. Starting at USD 480.11
billion in 2023, the market is expected to experience significant growth, reaching USD 13,322.68 billion by 2033.
This rapid increase underscores the rising importance of carbon credits as a tool for mitigating climate change, driven
by global efforts to reduce emissions and the growing adoption of carbon trading mechanisms [21]. To enhance the
analysis presented in Figure 2, it is essential to include statistical significance metrics, such as confidence intervals
or p-values, to validate the projected growth data for carbon credits from 2023 to 2033. It would add validity to the
results while offering a better grasp of the trends presented.

2. 1. Carbon trading market

A climate change mitigation strategy and the carbon trading market facilitate the price of carbon emissions. It is
also referred to as cap-and-trade emissions trading, or trading in emissions. In this system, which limits total
emissions of GHG to a level set by a regulatory body, businesses are allotted a certain number of emissions credits
or permits according to their permitted emissions. By reducing emissions below a certain level, a firm might provide
more credits to customers who are consuming more than their allocated amount. Consequently, companies have an
economic incentive to implement eco-friendly procedures and technology, which lowers emissions [22]-[25]. Two
international agreements that significantly impacted the carbon trading market are the Kyoto Protocol and the Paris
Agreement. By establishing a clean development mechanism (CDM) and mandating that developed nations cut their
emissions, the Kyoto Protocol broke new ground and allowed developed nations to finance poor nations' carbon
reduction programs. Carbon trading schemes were emphasized as crucial market-driven strategies in the battle
against climate change in the Paris Agreement, which backs their continuance and expansion [26]-[30]. Carbon

trading, a process involving the sale of carbon credits, is a strategy aimed at reducing GHG emissions through
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programs such as energy efficiency, afforestation, and renewable energy installations. These credits can be traded on
carbon markets or through bilateral agreements to create a flexible, affordable system that accelerates the transition
to a low-carbon economy and promotes global economic equity [31]-[36]. The author of ref [95] investigated the

impact of blockchain methods, such as smart contract technology, cryptocurrencies, and decentralized platforms, in

improving carbon trading networks and accelerating the transition to low-carbon energy sources, as well as the
incorporation of Al and game theory into energy exchanges.

Table 1. Utilization of Al and ML in carbon trading markets.

Ref Summary Main Findings

[95] The paper suggests a new way to combine Al and | Al-driven pricing models greatly enhanced the precision
blockchain to improve decentralized carbon markets | of carbon credit pricing in comparison to conventional
and facilitate sustainable reduction of emissions. approaches.

[96] The article suggests an online algorithm that uses | The paper suggests a collaborative optimization task to
carbon spot and future markets to enable carbon- | reduce the loss of accuracy and remain within a limited
conscious ML task offloading for sustainable edge Al. | budget for acquiring Carbon Emission Reduction (CERs)

to accomplish environmentally friendly edge Al.

[97] The article explores how Earth observation data and Al | The feasibility of utilizing Earth observation data and Al
algorithms can be used to monitor, report, and verify | algorithms to oversee, document, and authenticate carbon
carbon projects in voluntary carbon markets. projects in voluntary carbon markets is investigated.

[98] The article talks about how Al and ML are used in the | Al and ML are instrumental in driving a shift towards
automotive sector to decrease carbon emissions, | sustainability and environmental awareness in the
though it does not focus on carbon markets. automotive sector.

[99] ML algorithms play a significant role in carbon capture | Various applications of carbon capture and storage
and storage by forecasting physical characteristics, | extensively utilize ML algorithms such as ANN, CNN,
assessing stability, and tracking CO2 movement and | SVM, as well as LSTM for tasks such as predicting
release. physical properties, assessing mechanical stability, and

monitoring CO; migration and leakage.

[100] | This book utilizes AI and ML methods for predicting | Utilizing data-based algorithms, it provides understanding
prices and trends in carbon markets. of market dynamics, enabling accurate predictions of

carbon credit prices, recognition of new trends, and
evaluation of market instability.
3. MODEL ANALYSIS

Various investigations have presented certain theories, like [37] -[38], because legislation and regulations have
had various impacts over the years. The framework of [37] considers pre- and post-treatment phases for an evolving
evaluation of the treatment effect, which is important in carbon trading. Total resources, revenue development,
revenue to overall assets ratio, payout policy indicator, long-term debt to total properties ratio, and cash reserves to
the overall assets ratio are all combined to form the capital restriction indicator WW refers to in equation (1) [38].
The logarithm of total assets (SIZE, negative), the three-digit industry sales growth (ISG) industry sales growth of
the firm (ISG, positive), the ratio of cash flow to total assets (CFA, negative), a dividend policy indicator (DIV,
negative), the ratio of long-term debt to total assets (LD, positive), and the ratio of cash holdings to total assets (CH,
negative) [37,38]. Initially, the SA index is provided [38] as a substitute assessment of the funding restrictions by
equation (2).

WW = —0.044*SIZE + 0.102* ISG — 0.091*CFA — 0.062 * DIV + 0.021+«LD — 0.035*CH (1)

SA = —0.737 % SIZE + 0.043 * SIZE? — 0.040 * AGE )

When AGE is the natural log of the number of periods that a company has been publicly traded, and SIZE is the
natural log of the company's overall assets, adjusted for inflation. In [39], Shen and his colleagues compared their
model with their models in detail, so their model could complete previous models because it includes the
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environmental consciousness of clients, reduction of emissions, and variable carbon prices. Thus, the framework is
shown in Figure 3 and was modeled in [39].

Emission Sustainable Customer
Monitoring Production Interaction

Carbon —
Emission —> Revenue Flow
Generation —

Decision- E-Commerce
Making Integration

Figure 3. Sustainable business flow.

Figure 3 illustrates a supply chain model where carbon emissions from a manufacturer are influenced by other
enterprises, with costs being exchanged between them. The manufacturer supplies products to an e-commerce
platform at a price. p, which are then sold to customers at a price q, while the platform may receive a revenue share
pP From the manufacturer. The model captures the interactions between enterprises, manufacturers, e-commerce
platforms, and customers, emphasizing the role of carbon emissions in the supply chain. The model heavily relies on
the assumption of consumers' low-carbon preferences without accounting for potential variations across different
demographics and regions. The findings may have limited generalizability, as consumer preferences can vary based
on economic conditions, cultural factors, and market trends. Al can be used to develop predictive models that forecast
carbon emissions based on production levels, supply chain activities, and market demand. Another research gap is
the lack of integration of real, up-to-date carbon prices in the decision-making model.
Ref [40] utilized a city-level dataset from 2001-2015 and a Difference-in-Differences (DID) assessment design to
evaluate the impact of the NAAQMN program on local PM2.5 emissions in China. He and Song [41] utilized
mathematical aspects in carbon trading and carbon emissions. Different models were presented in this work, such as
DID and the Slack-Based Measure (SBM). The DID technique is used to assess how well the carbon trading program
has performed in the test zones in terms of lowering carbon emissions and increasing the effectiveness of carbon
emissions. The model includes two stages, which are indicated by equations (3) and (4):

In CO2; = ag + ayp; + aytreat; + az(p, * treat;) + YF a; X; + €;; 3)

8t = Bo + Bipe + Batreat; + B3 (p, * treaty) + X1 BiX; + € “)
In (3) and (4), i stands for provinces, and t Stands for years. In CO2;; Is the natural log of carbon dioxide emissions,
and &;; It Is carbon emission efficiency. treat; Is a dummy variable indicating whether a province is in the treatment
group (1 for pilot areas, 0 for non-pilot areas). p;It is a time variable (1 after 2013, 0 before). p; * treat; Is the
interaction term, showing when the carbon trading policy was applied in a specific region. a3 and B3 represent the
net effect of the carbon trading policy. Xi includes other control variables that might influence the results, and€;; It

is a random error term.
The second model is used to minimize the efficiency of the score. 8;;, which represents the carbon emission

efficiency of a decision-making unit. Integrating ML models such as time-series forecasting or reinforcement
learning can help in conducting dynamic efficiency analysis. This allows the model to account for changes over time
and adapt to new data, improving the relevance and accuracy of efficiency scores.

Another study explored a model in the Carbon Emissions Trading System (CETS) [42] on regional green technology
innovation. The analysis was conducted using a DID approach. So, the basic model is presented by equation (5).

invent, = fo + f1DID ¢ + fycontrol + Y, + 1y + € &)
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The reference mentioned that the model expands the emissions trading policy, which varies across different
contexts and under different conditions. These extensions allow researchers to understand the nuanced effects of the
policy, going beyond the average impact estimated in the basic model. Here’s why the model is extended by certain
factors, such as Human Capital (HC), Intellectual Property Rights (IPR) protection, marketization, and spillover

Effects.
. Define some variables,
Techniques & like carbon trading
Structures price, carbon trading
1 volume.

|
|
|
i Carbon

o R -—-— Emission
Frameworks, Hficioncy
like DID.

Marketization

Figure 4. Application of frameworks, variables to reach carbon emission efficiency.

Figure 4 illustrates the relationship between carbon trading policy and carbon emission efficiency, highlighting
key factors and frameworks involved. Carbon trading policy influences both marketization and the development of
techniques and structures, which are analyzed using frameworks like DID. The techniques and structures define
variables such as carbon trading price and volume, which ultimately impact carbon emission efficiency.

3. 1. Carbon trading volume

The whole quantity of carbon credits or permits that are exchanged during a period is called the carbon trading
volume. These amounts have been affected by changes in regulatory frameworks, market dynamics, and goals for
reducing emissions [43],[44]. The market for the trading of carbon has expanded recently, mostly due to the adoption
and spread of emissions trading schemes across different areas and a heightened emphasis on environmentally
friendly practices. The commitment of nations and businesses to cut emissions and achieve their goals is another
factor that determines the efficacy and success of carbon trading [44]-[49].

The carbon industry can suffer greatly from a resurgence of interest in the carbon market. The price of carbon
has increased to a level that coal is being removed from the electrical system in favor of less polluting natural gas or
carbon-free renewable energy sources, with a ton costing around €25. Traders believe that the price of carbon will
increase to a point where other industries are compelled to invest in cleaner technologies and fuels. This will be
beneficial for the environment but will also cause a significant shift in an industry that is yet unclear in its full effects.
For financial institutions, increasing the amount of carbon trading makes sense since it can lower price shortages,
mitigate the costs of low-carbon change, and provide a variety of monetary futures [50].

3.2. Carbon trading price

Prices for carbon trading vary according to international climate targets, laws and regulations, and the dynamics
of the market. Prices for carbon allowances are impacted by a variety of variables in established sectors, policy
changes, and adjustments to emission reduction targets. Prices in the optional carbon markets, where companies and
people voluntarily reduce their carbon footprint, are decided by the demand overall and the quality of the offset
initiatives. Furthermore, many nations and areas have adopted their carbon pricing schemes, resulting in a variety of
pricing arrangements worldwide. The general trend has been higher carbon prices as countries and organizations join
forces to pursue more aggressive climate goals [51]- [55]. As the economy becomes more decarbonized, the demand
for carbon credits will likely increase further. The yearly worldwide demand for carbon credits is expected to increase
from 1.5 to 2.0 GtCO2e by 2030 to 7 to 13 GtCO2e by 2050. Governments will probably raise their efforts toward
reaching net-zero timeframes, which would probably result in an even easier contraction of the credit supply. In
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actuality, it actually was a 1.7% annual decrease in the quantity of European union (EU)permits granted between
2013 and 2020. There is expected to be a 2.2% drop in certificates between the present and the year 2030. In 2012,
an excess of credit supply resulted in a decrease in prices. If the present trend continues, the cost of emissions per
ton by 2024 might range from $50 to $80. The carbon price as updated by the EU's emission trading scheme for the
years 2019 through 2024 is shown in Figure 5, this reference [56] can be used to update each framework. Figure 6
shows carbon trading, where traditional resources produce emissions, can be used to purchase carbon offsets,
resulting in a certificate of carbon neutrality, and businesses can invest in carbon-reducing projects by new
technologies, and renewable energy systems (RESs) in industry. Table 2 presents outcomes, and summary of trending
research.

Parhamfar et al.

Table 2. Summary of Al-Carbon research.

Ref Main findings Limitation

[55] Al presents prospects for enhancing comprehension | One challenge in using Al to address global warming is
of global warming and efficiently tackling the climate | ensuring the accuracy and reliability of climate models,
emergency. which can be impacted by incomplete data and complex

environmental interactions.

[56] In order to improve decentralized carbon markets and | Pay limited attention to particular characteristics of
accomplish sustainable emission reduction, the | decentralized carbon markets, such as blockchain-based
research suggests a novel fusion of blockchain | trade dynamics and Al-based price forecasting, while
technology with Al investigating a larger range of issues.

[57] Al and blockchain technology can help in managing | The high energy consumption of blockchain technology
renewable energy sources and carbon trading. can work against the environmental aims of programs such

as carbon trading and renewable energy management. This
is a restriction of combining blockchain and Al in these
areas.

[58] Diversity advantages can be obtained from Al as a | The volatility of carbon sectors, which is fueled by erratic
hedge against carbon costs; nevertheless, the | policy shifts and outside shocks such as the COVID-19,
relationship between AI and carbon prices is | presents a barrier to using Al as a hedge against carbon
adversely affected by policy unpredictability and the | prices and can impede future investment and strategy.
COVID-19 pandemic.

[59] In order to accomplish carbon-aware ML task off - | Determining the best course of action in real-time is
loading for green edge Al, the article suggests an | difficult due to fluctuations in resource costs, CER
online approach that takes use of carbon spots and | purchasing prices, location-specific carbon intensity, and
potential markets. the emergence of Tasks

[60] The study suggests using Al methods, such as a hybrid | Due to the complexity of the models, there is a risk of
neuro-fuzzy controller, to predict carbon pricing and | overfitting when employing computational intelligence
control related expenses. approaches, such as a hybrid neuro-fuzzy controller for

carbon pricing prediction. This can decrease the models'
usefulness in practical cases.

[61] Al can help with the energy revolution and the | Diverse trade policies among nations pose an obstacle to
lowering of carbon emissions, but the effect is | the efficient implementation of AI for energy transition
dependent on how free commerce is. and carbon emission reduction. These policies can impede

the exchange of technology, best practices, and data that
are essential for effective collaboration and Al deployment

The DID model assumes uniform treatment effects across provinces and relies on historical data, which may
limit its adaptability to real-time changes in market dynamics or policy shifts. Similarly, the SBM framework
provides efficiency scores but does not account for dynamic variables such as fluctuating carbon prices or external
market shocks, which could impact its applicability. The DID model effectively quantifies the regional impact of
carbon trading policies, offering a clear evaluation of treatment effects. However, it is limited by its static nature and
reliance on pre-determined variables. In contrast, the SBM model’s ability to incorporate multiple inputs and outputs
provides a more holistic view of carbon emission efficiency but may suffer from reduced accuracy when applied to
regions with incomplete or inconsistent data [62]-[63]. To enhance these models, future research should focus on
integrating real-time data streams and hybrid approaches. For instance, combining DID with machine learning
techniques, such as time-series forecasting, could improve the model’s adaptability to evolving market conditions.
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Additionally, expanding the scope of these models to consider external factors, such as global carbon pricing trends,
geopolitical events, and technological advancements in carbon capture, could provide a more comprehensive and
scalable framework. By addressing these limitations, the models can be refined to better align with the dynamic and
interconnected nature of global carbon markets.
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Figure 6. Carbon market dynamic.

4. CONTENT ANALYSIS

Al technologies play a crucial role in enhancing the precision and effectiveness of monitoring emissions and
reporting within carbon trading systems. ML-driven automated systems can analyze large datasets to track emissions
in real-time, guaranteeing accountability and transparency for involved parties [64]-[66]. Al-driven data analytics
assist participants make wise decisions by offering insightful information about market patterns.

Market participants can predict price variations, evaluate threats, and improve their carbon trading tactics for
improved economic and ecological results by using forecasting models and historical data analysis [67]- [69]. It
improves the accuracy and openness of carbon markets and is frequently combined with Al. It ensures the
dependability of carbon credits and reduces the likelihood of fraud. By providing automatic trade execution when
predefined conditions are satisfied, smart contracts streamline transactions and reduce administrative expenses. Al-
powered algorithms streamline trading processes, allowing for more efficient and rapid transaction execution. These
algorithms optimize the purchase and sale of carbon credits by market participants in a way that complies with all
applicable regulations by using Al to adapt to changing market circumstances [70]-[75]. Al is being used to assess
the effectiveness of carbon offset programs by analyzing various datasets, evaluating environmentally impacting
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enterprises, verifying emission reductions, and observing established protocols. Al-powered solutions make carbon

credits more marketable and of higher quality. It also simplifies scenario simulation to evaluate potential policy
changes on carbon markets, helping governments and organizations create effective climate policies [76]-[79]. Figure
7 indicates ML and Al applications in carbon trading.

®  Pricing trends

®  Automating trading operations

®  Assessment market trends CO 2
e

®  Emission projections ‘

®  Analyzing data

® Risk management

Al & ML

Figure 7. Application of ML and Al in Carbon trading.

The carbon trading sector is being radically transformed by ML, which is enhancing emission forecasts,
predicting pricing trends, and automating trading operations. Machine learning algorithms improve real-time trading
decisions by analyzing market trends and historical data to provide accurate emission projections. By responding to
new information, automated systems keep operations running smoothly by regulations. In addition, ML aids in risk
management by allowing traders to optimize carbon trading methods with knowledge by analyzing factors such as
economic circumstances and regulatory changes. ML, SVM [80], random forest (RF) [81], and linear regression
(LR) [82] can be employed for this purpose. One potential issue with Al- and ML-based automated trading systems
is the difficulty in assessing the risk of a deal. The algorithms may fail if traditional risk management approaches are
used, as they will override the algorithm's output. Before making a trade selection, an ML approach can evaluate
hundreds of factors. The ML and DL methods are shown in Figure 8. ML revolutionizes carbon trading by enhancing
emission forecasts and predicting pricing trends. Key factors that can be considered in this process include market
trends, historical data, economic conditions, and regulatory changes, which help optimize trading strategies.
Algorithms, such as SVM, RF, and LR, would analyze these variables to provide accurate insights. Additionally,
ML can aid in real-time decision-making, allowing automated systems to adapt to new information and maintain
compliance with regulations. However, assessing the risk of trade remains.

Integrating Al and ML techniques into the framework depicted in Figure 9 can be applied in several areas to
achieve specific goals related to carbon trading policy, marketization, techniques & structures, and carbon emission
efficiency. Use ML models to predict the impact of various carbon trading policies on market behavior and carbon
emission levels, trading prices to achieve the desired environmental outcomes while maintaining economic
efficiency, facilitating the market's evolution towards efficient carbon trading. Figure 6 shows the ML, and the Al
integrated with the framework is shown in Figure 9.

SVMs are crucial in carbon trading for better risk management and forecasting. Market players can make better,
more informed decisions with the help of SVM [80], which effectively predicts carbon credit values using historical
data. Due to the algorithm's data classification capabilities, trend analysis is made less difficult, which in effect helps
traders to identify patterns and anticipate changes in the market. Additional applications of SVM include evaluating
potential outcomes of various scenarios, such as regulatory changes impacting the carbon credit market. Traders are
provided with useful information to assist them in navigating the ever-changing carbon credit market, and the SVM-
driven application and risk management procedures are enhanced. Through the integration of past data, current
trends, and risk evaluation, SVM helps in developing a more adaptable and robust approach within the intricate realm
of carbon trading. For better risk management and carbon trading forecasts, SVM is an indispensable tool. With the
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use of historical data, SVM can accurately forecast the prices of carbon credits in a carbon market context. Because
of this, market participants can make better decisions by learning from the industry's historical trends. Due to the
algorithm's data-categorization capabilities, trend analysis becomes less difficult, letting traders see patterns and
anticipate market shifts. Changes in legislation impacting the carbon credit market are only one example of how
SVM can be used to evaluate risks associated with various scenarios.

ML Methods DL Framework
Offers traditional statistical Provides advanced neural
approaches with techniques like network mode_ls ,.and TDT for
SVM, RF, and LR. deeper insights.

Figure 8. ML and DL methods.

Goal: Optimize Goal: Forecasting
policy design and Défifie soine variables,/ carbon trading prices
implementation. Techniques & like carbon trading and volumes.
Structures price, carbon trading
volume.
Carbon Goal: Enhance efficiency of
RN e carbon emissions reduction
i efforts.
| Frameworks, Efficiency
| like DID.
|
|
Marketization

Figure 9. Application of ML, and Al into the framework.

Traders get valuable insight into the complexities of the volatile carbon credit market when they use SVM-driven
approaches to enhance risk management. Through the integration of historical research, trend detection, and risk
assessment, SVM contributes to the development of a more versatile and long-lasting strategy within the intricate
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domain of carbon trading. Carbon trading uses the RF method [81], a robust ML tool, for decision-making in complex
datasets. It aids in cost estimations, market analysis, and strategy optimization. The RF algorithm's feature

identification and prediction capabilities simplify risk assessment and optimize portfolios. LR models help carbon
traders predict potential connections between factors affecting carbon credit costs. This improves forecasting
accuracy and helps stakeholders respond to market challenges more effectively [82]. DL models analyze historical
market data, emissions developments, and policy changes, identifying complex patterns and correlations. These
models also enhance predictive analytics, leading to more accurate projections of carbon credit prices and market
volatility. Moreover, DL can help with the optimization of portfolios by identifying the best trading approaches based
on the analysis of complex data. The incorporation of DL models into carbon trading highlights the potential for
enhanced processes for making decisions, more effective risk management, and innovation in environmentally
friendly financial markets. Recurrent Neural Network (RNN) [83], ANN [84], Deep Neural Network (DNN) [85],
and Traditional Decision Tree (TDT) [86] are different approaches that are reported in the literatures. In the ever-
changing field of carbon trading, RNNs are quite helpful [83], particularly when it comes to examining temporal
trends in time-series data. By utilizing knowledge from past data, their capacity to identify sequential relationships
and patterns improves the forecasting of future emission levels and the cost of carbon credits. With the help of this
tool, market players may more effectively forecast future prices, make well-informed judgments, and strengthen risk
management plans. Due to their ability to identify complicated associations in historical data, RNNs help to provide
a more thorough picture of the dynamic carbon trading landscape. This is because they provide stakeholders with a
useful tool for navigating the complexity of the market and precisely and foreseeably optimizing trading strategies.

The carbon trading industry is commencing to experience a rise in the use of ANNs. ANNs [84] are essential for
predicting the cost of carbon credits because they are skilled at sifting through large datasets and identifying complex
patterns. ANNs improve prediction accuracy by utilizing their ability to find non-linear correlations in past market
data and emission patterns. With the use of this technology, market players may maximize their risk management
tactics and make educated decisions in the ever-changing carbon trading market. Through the help of ANNS,
participants may effectively handle uncertainties, improve trading strategies, and eventually increase the
effectiveness and efficacy of ecologically friendly financial practices in the carbon trading space. ANNs offer an
advanced tool for adjusting to the intricacies of the business.

DNNs are becoming more and more used in carbon trading because of their amazing ability to evaluate large
and complex datasets. DNNs [85] are extremely useful in this situation because they can quickly and accurately spot
intricate patterns in past market data, emission trends, and regulatory changes. Their capacity to identify irregular
patterns in data is very useful, leading to more precise forecasts and insights. This quality is essential for effectively
handling risks, fine-tuning trading tactics, and negotiating the complex and ever-changing carbon trading market.
The adaptability and learning capacities of DNNs place them as valuable assets in the pursuit of sustainability and
profitability in carbon trading, as stakeholders look for trustworthy instruments to make informed decisions and
maintain their competitiveness in the market.
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Figure 10. Structure layout of TDT.
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In the carbon trading industry, traditional decision trees [86] are useful instruments for making strategic choices
based on past performance and other influencing factors. In this situation, decision tree models are used to forecast
outcomes like pricing for carbon credits or emission levels by analyzing input variables, including economic
indicators, modifications to regulations, and data related to the project. Decision points and possible results are
marked by the tree structure, which makes the decision-making process easier to see and understand. Decision trees
can help comprehend market dynamics by recursively splitting data based on pertinent features and identifying
patterns and connections [87]-[89]. Figure 10 depicts a TDT's structural layout. Three different types of nodes
structure a TDT, subtrees, leaves and root nodes. While a leaf node presents a category target label and represents a
classification or forecast outcome, root and sub-tree nodes indicate a binary split test on an attribute. The two
fundamental phases of the TDT technique are classification and learning. Data is collected throughout the learning
process and divided into testing and training sets. The development of testing and training sets is a crucial component
in the assessment of big data models, which is accomplished by randomly selecting a sizable portion of the database's

data to be utilized as the remaining information as test data and the training data. The incorporation of Al and ML is
indicated in Figure 11.
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Figure 11. ML and Al techniques for different goals.
5. PROSPECTIVE DIRECTION

The future scope of ML and Al in carbon trading lies in transforming it into a more intelligent, efficient, and
transparent system, thus enabling smart trading. By leveraging large datasets, ML techniques such as SVM, RF, and
deep learning models can anticipate trends, analyze risks, and optimize trading strategies. For instance, SVM and RF
models can be employed to predict market fluctuations based on various environmental and economic indicators,
while deep learning can be used to model complex, non-linear relationships within the data [90]-[92].

Al can significantly improve decision-making by analyzing market trends, ensuring legal compliance, and
applying advanced statistical analysis to forecast market behavior. For real-world applications, Al could also be used
to automate the optimization of trading portfolios, adjust strategies dynamically to external factors such as policy
changes or market disruptions, and enhance the effectiveness of carbon market instruments.

Blockchain innovation, along with Al, improves the effectiveness and privacy of emissions trading. Blockchain
enables decentralized verification, which increases transparency and reduces the likelihood of fraud. Al models can
also simulate probable market reactions to modifications to policies, giving stakeholders data-driven insights to help
them make informed tactical decisions. Al can be used to optimize carbon credit price models by taking into
consideration factors such as lowering emissions, future potential price volatility and policy impacts. Future research
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could focus on developing Al models capable of integrating with blockchain platforms to fully automate carbon
credit transactions. A critical area for future investigation is the integration of IoT with carbon trading systems. IoT
may facilitate the immediate gathering of data and ongoing monitoring of emissions in a variety of sectors, including
industry, transportation, and power plants. IoT devices can collect exact, real-time emissions of carbon data and
promptly transmit it to decentralized systems, assuring data reliability and openness in carbon markets. This
integration offers significant opportunities for reducing transaction costs and increasing market efficiency.

In the real world, merging IoT with blockchain-based technology enables automatic verification of carbon credit
transactions after emission data is authenticated, which speeds up the trading process. Al and ML models can
evaluate real-time data to forecast market moves, allowing traders to make selections based on current data rather
than trends from the past. Additional studies should focus on developing computations incapable of making real-
time forecasts in turbulent markets and examining the financial feasibility of such technology under various market
circumstances. Furthermore, automated [oT systems can assist organizations in optimizing their carbon footprints,
enabling smarter compliance with carbon trading regulations. This can also lead to more dynamic participation in
carbon markets, as companies gain insights into their emissions profiles and adjust strategies accordingly. By
enhancing the tracking of renewable energy usage, [oT could allow companies to optimize their energy consumption
and emissions reductions, thereby improving their position in the carbon market.

Despite the tremendous potential, there are several challenges to be addressed. Implementing Al, ML, and IoT in
carbon trading requires overcoming technical barriers related to data standardization, integration, and privacy
concerns. Moreover, there is a need for international collaboration to establish regulations and standards for Al-based
carbon trading solutions. The complicated nature of policy frameworks, as well as the varying pace of regulation
acceptance between regions, may hinder general implementation. On the other side, the integration of these
innovations creates enormous opportunities, such as increased market availability, shorter settlement times, greater
transparency, and a lower chance of fraud. There is also a need for further field tests and pilot programs to show that
these technologies have practical advantages and can scale.

In conclusion, combining Al, ML, IoT, and decentralized platforms could lead to a smarter, more resilient carbon
trading market that accelerates the global transition to low-carbon energy. This collaboration can not only improve
market efficiency but also enhance ecological responsibility and boost economic productivity in carbon markets.
Future research should continue to explore the interoperability of these technologies, the development of predictive
models that integrate real-time data, and the establishment of standards for ensuring the security and scalability of
these solutions. This integration would result in an end-to-end smart trading ecosystem, combining real-time IoT
insights, Al-powered analytics, and secure blockchain transactions [95], [100]. Furthermore, loT can improve the
tracking of renewable energy usage, enabling companies to trade more efficiently by linking emissions data directly
with energy consumption [96],[101]-[102].

6. DISCUSSION

Carbon trading encourages companies to reduce emissions by offering financial incentives for carbon credits.
The integration of ML and Al improves emissions tracking accuracy, trading strategies, and market trends, enhancing
carbon management efficiency and regulatory compliance. In this paper, the authors provide a framework including
the DID model, carbon trading policy, carbon emission efficiency, and market variables such as carbon trading
volume and carbon trading price, which are presented in Figure 4. Figure 5 shows the price of carbon as updated by
the EU's emission trading scheme between 2019 and 2024. Moreover, Figure 6 displays carbon trading, while the
traditional resources are producing emissions, which are represented. This money can be used to purchase carbon
offsets, such as RESs, such as wind turbines (WTs), and photovoltaics (PVs) [103]. In return for their investment in
these offsets, the factory receives a certificate that verifies their carbon neutrality. Corporations can offset their
emission levels by investing in carbon-reducing projects. This can contribute to meeting the goal of lowering carbon
dioxide emissions and minimizing climate change. The remainder of this study focuses on the incorporation of Al
and ML into carbon trading.

So, Figure 7 to Figure 9 describe the application of these techniques, the structure of Al and ML techniques, and
the application of ML, and Al in the framework. Table 3 illustrates the application of ML and DL in carbon trading.
Table 3 highlights the application of various ML and DL algorithms in carbon trading and related environmental
tasks. It showcases their predictive capabilities in areas like carbon disclosure trends, atmospheric CO2 limits,
biomass estimation, carbon cost forecasting, and emissions system predictions. The results emphasize the accuracy
and efficiency of models such as RF, SVM, and DNN, underscoring their potential to enhance decision-making and
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sustainability efforts in carbon trading. Table 4 represents the comparison with previous work. For future research,
researchers can bridge some research gaps in this work:

1. Consider other environmental metrics for future work.
2. Apply and simulate ML techniques to the framework presented in Figure 2.
3. Investigate emerging technologies, such as carbon capture.

Table 3. ML and DL algorithms and results in carbon trading.

Ref Description Algorithm Findings

[79] | To employ ML algorithms to investigate the | Logistic, RF, and GBDT Logistics have 89%, RF has 94%
trend of optional disclosure of carbon in the and GBDT has 92% accuracy.
Korean financial sector.

[80] | An estimate of when the world would reach a | SVM and Linear regression | SVM (Root Mean Square Error
particular upper limit of atmospheric carbon (RMSE)= 0.255) and (RMSE=
dioxide concentration was made using 0.405)
historical data.

[78] | Recent developments in data science and GIS | SVM, RF and ANN SVM (RMSE = 21.97, R2 = 0.54),
technologies have made it possible to RF(R? = 0.69 and RMSE = 17.07)
anticipate aboveground biomass (AGB) and and ANN (R? = 0.63 and RMSE =
evaluate ecosystem services in agroforestry, 19.35)
and this capacity is growing quickly.

[84] | To construct a prediction model that ascertains | Conditional Decision Tree | CDT (Mean Absolute Error
future carbon costs given a collection of real- | (CDT), Traditional Random | (MAE)= 0.6608, MSE= 1.3007),
world facts. To develop a model for forecasting | Forest (TRF), Conditional | TRF (MAE= 0.2500, Mean Square
future carbon pricing. Random Forest (CRF), and | Error (MSE)= 0.1413), CRF

TDT (MAE= 0.5258, MSE= 0.5444) and
TDT (MAE= 0.8398, MSE=
1.3991)

[83]1 | A new and effective forecasting technique | Particle Swarm | PSO DNN (MAE= 0.2016, MSE=
helps to properly anticipate the carbon | Optimization (PSO)-DNN, | 22.6872), IPSO DNN (MAE=
emissions of the electricity system. Improved Particle Swarm | 0.1578, MSE= 21.7883) and SCA

Optimization (IPSO)-DNN, | IPSO DNN (MAE= 0.0867, MSE=
and Spearman Correlation | 3.7572)
Analysis (SCA)-IPSO-
DNN.
Table 4. Comparison with previous works.

Ref Objective of the study Algorithm Findings

[85] | To forecast the solubility of CO, in ionic | ANN and SVM The CO, solubilities were well-
liquids. fitting and forecast by both models.
Evaluating diverse ionic liquid kinds under But the ANN model managed to
varied pressure and temperature ranges. identify better results.

[86] | To determine how surface functionalization | MLPNN, Adaptive Neuro- | The CFF neural network produces
affects graphene oxide-amine nanofluid CO, | fuzzy Inference Systems | accurate predictions because of its
performance. (ANFIS), LSSVM, RBF, | minimal root mean square and mean

Gradient Reinforcement) | square mistakes.
(GR), and Cascade
Feedforward (CFF).

[87] | To use a genetic algorithm in ML to forecast | Genetic algorithm (GA) | Establishing greater CO, recovery
Metal-organic Frameworks (MOF) efficiency | method (90%) and purity (95%) is only
in swing adsorption in vacuum. possible with 482 MOFs materials.

Up to 91% of predictions made by
the ML model are accurate.

[88] | In the Permian Basin, using ANN to anticipate | ANN strategy The findings show that the ANN
CO; storage and oil recovery. technique can accurately forecast

CO; storage and oil recovery in real-
world scenarios.

[89] | Toidentify irregularities in the monitoring well | LSTM, CNN, and Conv - | The Conv-LSTM outperforms other
pressure data sources for the purpose of storing | LSTM models in terms of accuracy,
and collecting carbon. according to the data.
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[90] | By creating standardized CO, adsorption | RF technique The findings show that the RF
models on Porous Carbon Materials (PCMs) technique has a greater accuracy in
and performing a comprehensive examination predicting the chemical and physical
into the effects of different parameters on CO, characteristics of materials made of
capture capability within the same framework, carbon  with  pores  (useful
this study filled in gaps in knowledge. prediction: R2 > 0.9).

[91] | Six distinct Al techniques are usedto | Al methods, such as ANFIS, | The findings show that the feed-
estimate the solubility of CO; in 1-n-butyl-3- | SVM, cascade feed-forward | forward neural network in cascade

methylimidazolium tetrafluoroborate | neural NN, and ANN. was very effective in predicting the
([Bmim][BF4]). These techniques include four absorption of CO; in liquids with
ANN, LS-SVM, and ANFIS. The optimal ions.

model for the examined issue has been
determined to be the feed-forward neural
network in cascade.

[92] | It emphasized different strategies that combine | ANN and the decision tree | Using complete process simulation,

using molecular simulations and | model with GB. ML models were used to forecast the
ML approaches to accurately evaluate the performance of Vacuum-swing
capabilities and characteristics of MOFs for Adsorption (VSA) technique uses
several applications, such as gas storage, thirty materials. 91% of the
segregation, and catalysis, and to forecast the predictions were made with total
reliability, guest accessibility, and accuracy.

synthesizability of MOFs. The enormous
potential of integrating ML strategies into
mathematical modeling of MOFs.

While it would be true that Al systems require significant energy resources, recent advancements in energy-
efficient Al algorithms and hardware offer promising solutions to mitigate these concerns. For instance, edge
computing and green Al models have been developed to optimize resource usage, significantly reducing the carbon
footprint of Al operations [93]-[96]. Furthermore, in the context of carbon trading, the potential environmental
benefits of Al can outweigh its energy demands. Al-driven systems enhance the accuracy of emissions monitoring,
automate fraud detection, and enable predictive analytics for market behaviors, which collectively contribute to
substantial reductions in GHG. These capabilities create a net-positive impact by promoting efficient trading systems
that directly support carbon neutrality goals.

To address the concern more holistically, Al applications in carbon trading can be coupled with renewable energy
sources and carbon-offset mechanisms to neutralize their operational emissions. For example, leveraging
decentralized platforms powered by blockchain can improve transparency, while using renewable-powered data
centers ensures alignment with sustainability objectives. By integrating such approaches, Al-driven carbon trading
not only remains a viable tool but also becomes a critical enabler in achieving a balanced and sustainable pathway
toward global carbon reduction goals.

This study highlights the transformative role of Al in enhancing efficiency, transparency, and scalability in
carbon trading systems. However, the study is limited by the absence of practical implementation data and the
reliance on simulated environments for validating Al models. These limitations underscore the need for future
research to incorporate real-world datasets and explore region-specific dynamics to ensure the robustness and
adaptability of proposed Al frameworks. Addressing these gaps could significantly enhance the reliability of Al
applications in achieving global climate objectives.

7. CONCLUSION

The study explores the use of Al in carbon trading to reduce greenhouse gas emissions. It reveals that Al can
improve the precision and efficacy of carbon trading systems by analyzing datasets, automating transactions, and
forecasting market trends. The study also investigates how artificial intelligence might help reduce carbon emissions
in industrial and sustainable systems. However, it emphasizes possible downsides, such as biased algorithms,
interpretability concerns, and the necessity for data of superior quality. This study’s strategy is presented in Figure
1. Moreover, this study provides a comparison in previous research including details, limitations, and model analysis
as shown in Tables 2 to 4, and ML/AI integration in different goals in carbon trading which is indicated in Figure
11. The findings reveal that Al enhances the precision and efficiency of carbon trading systems by enabling real-
time emissions tracking, automating transactions, and providing robust market trend forecasts. This work provides a
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comprehensive framework that builds on prior research, offering new perspectives on the role of Al in driving global
climate objectives. While the study highlights the potential of Al it also acknowledges limitations, including the
need for real-world application and validation of the proposed models. Addressing these limitations in future research
could further solidify AI’s transformative impact, making carbon markets more effective in combating climate
change. This contribution is vital for policymakers, businesses, and researchers aiming to achieve a carbon-neutral
economy.
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