Bridging Mind and Machine: Enhancing Human Potential Through Self-Regulation and Brain-Computer Interfaces

Authors

  • Mohammad Parhamfar Independent Researcher and Entrepreneur, Iran. Email: drparhamfar@gmail.com, ORCID: https://orcid.org/0000-0002-3442-8270 Author
  • Milad Taheri 1-Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran. 2-Safahan Institute of Higher Education, Isfahan, Iran, Email: m.taheri@Safahan.ac.ir , milad.taheri@iau.ir, ORCID: https://orcid.org/0009-0001-0619-6601 Author
  • Zahir Bandegani Independent Researcher, Isfahan. Iran. Email: z.bandegani@hotmail.com , ORCID: https://orcid.org/0000-0002-2758-6844 Author
  • Ghita Lazrek Lab LIASSE, École Nationale des Sciences Appliquées de Fès, Sidi Mohamed Ben Abdellah University (USMBA), Fez, Morocco. Email: ghita.lazrek@usmba.ac.ma , lazrekghita@gmail.com , ORCID: https://orcid.org/0009-0004-7306-7369 Author
  • Hajar Fares Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93000, Morocco. Email: hajar.fares@etu.uae.ac.ma , ORCID: https://orcid.org/0009-0006-1070-8290 Author

DOI:

https://doi.org/10.71426//jcdt.v1.i2.pp77-94

Keywords:

Brain-Computer Interfaces (BCIs), Cognitive enhancement, Neurotechnology, Neuroleptics, Human-Machine Integration

Abstract

In an era defined by accelerating neurotechnological innovation and heightened cognitive demands, the pursuit of human enhancement is reaching unprecedented heights. This paper explores two converging frontiers of optimization: internal strategies of mind management and external augmentation via brain-computer interfaces (BCIs). Drawing from recent empirical research, mathematical models, and startup ecosystems, also analyzed how self-regulation techniques such as mindfulness, reframing, and attentional training intersect with emerging neurotechnology to expand cognitive capacity, productivity, and mental well-being. Clinical applications of BCIs, including Deep Brain Stimulation (DBS) and Responsive Neurostimulation (RNS), are evaluated alongside non-invasive wearables, with comparative insights into efficacy and patient outcomes. Furthermore, the study examines advanced BCI architectures, ethical dilemmas in military and defense applications, and emerging strategies within the commercial neurotechnology market. In parallel, mathematical optimization frameworks and neuro-algorithmic models are presented to bridge the disciplines of neuroscience and artificial intelligence, highlighting their synergistic potential for cognitive enhancement. By synthesizing interdisciplinary insights, the paper outlines future research directions and offers a critical roadmap for responsible innovation in the medical and business sectors. Ultimately, this study positions the integration of self-directed mental practices and neurotechnological tools as a dual engine for unlocking human potential.

References

[1] Malicse A. Cognitive Optimization in the Age of AI: Enhancing Human Potential. https://philarchive.org/rec/MALCOI-2

[2] Ghimire MR, Subedi D. The effectiveness of mind management-based interventions in adolescent well-being, empowerment, and academic performance. https://elibrary.ku.edu.np/handle/20.500.14301/443

[3] Martinez W, Benerradi J, Midha S, Maior HA, Wilson ML. Understanding the ethical concerns for neurotechnology in the future of work. InProceedings of the 1st Annual Meeting of the Symposium on Human-Computer Interaction for Work 2022 Jun 8 (pp. 1-19). https://doi.org/10.1145/3533406.3533423

[4] Bernal SL, Celdrán AH, Pérez GM, Barros MT, Balasubramaniam S. Security in brain-computer interfaces: state-of-the-art, opportunities, and future challenges. ACM computing surveys (CSUR). 2021 Jan 2;54(1):1-35. https://doi.org/10.1145/3427376

[5] Ligthart S, Ienca M, Meynen G, Molnar-Gabor F, Andorno R, Bublitz C, Catley P, Claydon L, Douglas T, Farahany N, Fins JJ. Minding rights: Mapping ethical and legal foundations of ‘neurorights’. Cambridge quarterly of healthcare ethics. 2023 Oct;32(4):461-81. https://doi.org/10.1017/S0963180123000245

[6] Gordon EC, Seth AK. Ethical considerations for the use of brain–computer interfaces for cognitive enhancement. PLoS biology. 2024 Oct 28;22(10):e3002899. https://doi.org/10.1371/journal.pbio.3002899

[7] Yuste R, Goering S, Arcas BA, Bi G, Carmena JM, Carter A, Fins JJ, Friesen P, Gallant J, Huggins JE, Illes J. Four ethical priorities for neurotechnologies and AI. Nature. 2017 Nov 9;551(7679):159-63. https://www.nature.com/articles/551159a

[8] Parhamfar M, Shojaei S, Hajarkesht A, Pinnarelli A, Soleimani A. Towards the Applications of Blockchain in Distribution Networks: A Brief Review. Energy. 2025;8(2). http://dx.doi.org/10.25729/esr.2025.02.0002

[9] Parhamfar M, Eidiani M, Abtahi M. Distributed energy storage system: Case study. InDistributed Energy Storage Systems for Digital Power Systems 2025 Jan 1 (pp. 395-422). Elsevier. https://doi.org/10.1016/B978-0-443-22013-5.00013-7

[10] Parhamfar M, Güven AF, Pinnarelli A, Vizza P, Soleimani A. Artificial Intelligence in Carbon Trading: Enhancing Market Efficiency and Risk Management. Journal of Computing and Data Technology. 2025 Jun 30;1(1):19-39. https://doi.org/10.71426/jcdt.v1.i1.pp19-39

[11] Parhamfar M, Adeli AM. The study of electrical grid components after installing a 10 MW photovoltaic power plant with large-scale batteries at peak load by DigSilent software. American Journal of Electrical Power and Energy Systems. 2022;11(5):97-107.‏ https://doi: 10.11648/j.epes.20221105.12

[12] Shih JJ, Krusienski DJ, Wolpaw JR. Article highlights. InMayo Clinic Proceedings 2012 (Vol. 3, No. 87, pp. 268-279). https://doi.org/10.1016/j.mayocp.2011.12.008

[13] Gross JJ. Emotion regulation: Current status and future prospects. Psychological inquiry. 2015 Jan 2;26(1):1-26. https://doi.org/10.1080/1047840X.2014.940781

[14] Sirois F, Pychyl T. Procrastination and the priority of short‐term mood regulation: Consequences for future self. Social and personality psychology compass. 2013 Feb;7(2):115-27. https://doi.org/10.1111/spc3.12011

[15] Smyth JM, Johnson JA, Auer BJ, Lehman E, Talamo G, Sciamanna CN. Online positive affect journaling in the improvement of mental distress and well-being in general medical patients with elevated anxiety symptoms: A preliminary randomized controlled trial. JMIR mental health. 2018 Dec 10;5(4):e11290. http://dx.doi.org/10.2196/11290

[16] Berkman ET. The neuroscience of goals and behavior change. Consulting Psychology Journal: Practice and Research. 2018 Mar;70(1):28. https://doi.org/10.1037/cpb0000094

[17] Burnette JL, Knouse LE, Billingsley J, Earl S, Pollack JM, Hoyt CL. A systematic review of growth mindset intervention implementation strategies. Social and Personality Psychology Compass. 2023 Feb;17(2):e12723. https://doi.org/10.1111/spc3.12723

[18] Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, Matthews K, McIntyre CC, Schlaepfer TE, Schulder M, Temel Y. Deep brain stimulation: current challenges and future directions. Nature Reviews Neurology. 2019 Mar;15(3):148-60. https://www.nature.com/articles/s41582-018-0128-2

[19] Laker V, Simmonds-Buckley M, Delgadillo J, Palmer L, Barkham M. Pragmatic randomized controlled trial of the Mind Management Skills for Life Programme as an intervention for occupational burnout in mental healthcare professionals. Journal of mental health. 2023 Jul 4;32(4):752-60. https://doi.org/10.1080/09638237.2023.2182423

[20] [Online] Available: https://www.findlight.net/blog/evolution-and-future-of-brain-machine-interface-in-2024/

[21] Laydevant J, Wright LG, Wang T, McMahon PL. The hardware is the software. Neuron. 2024 Jan 17;112(2):180-3. https://doi.org/10.1016/j.neuron.2023.11.004

[22] Chan E. The FDA and the Future of the Brain-Computer Interface: Adapting FDA Device Law to the Challenges of Human-Machine Enhancement, 25 J. Marshall J. Computer & Info. L. 117 (2007). UIC John Marshall Journal of Information Technology & Privacy Law. 2007;25(1):4.https://repository.law.uic.edu/cgi/viewcontent.cgi?article=1003&context=jitpl

[23] [Online] Available: https://neurosciencenews.com/neuralink-bci-neuroethics-255555/

[24] Chen XL, Xiong YY, Xu GL, Liu XF. Deep brain stimulation. Interventional neurology. 2013 Aug 10;1(3-4):200-12. https://doi.org/10.1159/000353121

[25] Price JB, Rusheen AE, Barath AS, Cabrera JM, Shin H, Chang SY, Kimble CJ, Bennet KE, Blaha CD, Lee KH, Oh Y. Clinical applications of neurochemical and electrophysiological measurements for closed-loop neurostimulation. Neurosurgical focus. 2020 Jul 1;49(1):E6. https://doi.org/10.3171/2020.4.FOCUS20167

[26] Musk E. An integrated brain-machine interface platform with thousands of channels. Journal of medical Internet research. 2019 Oct 31;21(10):e16194. https://doi.org/10.2196/16194

[27] Vanneste S. let’s shape learning Into lasting Memories. Neuroscience Insights. 2024 Feb;19:26331055241227220. https://doi.org/10.1177/26331055241227220

[28] Lapenta OM, Rêgo GG, Boggio PS. Transcranial electrical stimulation for procedural learning and rehabilitation. Neurobiology of Learning and Memory. 2024 Sep 1;213:107958. https://doi.org/10.1016/j.nlm.2024.107958

[29] Toth AJ, Bruton AM, Campbell MJ. Neurostimulation: exploring perceptual & cognitive enhancement. Frontiers in Psychology. 2025 Jun 13;16:1583115. https://doi.org/10.3389/fpsyg.2025.1583115

[30] Luu DK, Nguyen AT, Jiang M, Drealan MW, Xu J, Wu T, Tam WK, Zhao W, Lim BZ, Overstreet CK, Zhao Q. Artificial intelligence enables real-time and intuitive control of prostheses via nerve interface. IEEE Transactions on Biomedical Engineering. 2022 Mar 18;69(10):3051-63. https://doi.org/10.1109/tbme.2022.3160618

[31] https://neurosciencenews.com/neurotech-bci-18953/

[32] Khrisna BM, Jhansi VC, Shama PS, Leelambika AB, Prakash C, Manikanta BV. Novel solution to improve mental health by ntegrating music and IoT with neural feedback. J of Computl Inform Sys. 2019;15(3):234-39.

[33] Huh H, Shin H, Li H, Hirota K, Hoang C, Thangavel S, D’Alessandro M, Feltman KA, Sentis L, Lu N. A wireless forehead e-tattoo for mental workload estimation. Device. 2025 May 29. https://www.cell.com/device/fulltext/S2666-9986(25)00094-8?ref=applespbevent.ru

[34] Ahmed S, Momin M, Ren J, Lee H, AlMahmood B, Huang LP, Pandiyan A, Veeramuthu L, Kuo CC, Zhou T. Stick-and-play bioadhesive hairlike electrodes for chronic EEG recording on human. npj Biomedical Innovations. 2025 Mar 18;2(1):9.https://doi.org/10.1038/s44385-025-00009-x

[35] Vaghasiya JV, Mayorga-Martinez CC, Pumera M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. npj Flexible Electronics. 2023 Jun 2;7(1):26. https://www.nature.com/articles/s41528-023-00261-4

[36] Sattler S, Jacobs E, Singh I, Whetham D, Bárd I, Moreno J, Galeazzi G, Allansdottir A. Neuroenhancements in the military: A mixed-method pilot study on attitudes of staff officers to ethics and rules. Neuroethics. 2022 Apr;15(1):11. https://doi.org/10.1007/s12152-022-09490-2

[37] [Online] Available: https://www.jasoren.com/augmented-reality-military/

[38] Oh J, Kim J. Military application study of BCI technology using brain waves in Republic of Korea Army: Focusing on personal firearms. Journal of Advances in Military Studies. 2022 Apr 30;5(1):35-48. https://doi.org/10.37944/jams.v5i1.115

[39] Gielas AM. Soldier Enhancement through Brain–Computer Interfaces: The Risks of Changing the Human Condition. The RUSI Journal. 2025 Jan 2;170(1):32-47. https://doi.org/10.1080/03071847.2025.2449894

[40] Wu J, Wang Z, Xu T, Sun C. Driving mode selection through SSVEP-based BCI and energy consumption analysis. Sensors. 2022 Jul 28;22(15):5631. https://doi.org/10.3390/s22155631

[41] Yoon Y, Cho IJ. A review of human augmentation and individual combat capability: focusing on MEMS-based neurotechnology. Micro and Nano Systems Letters. 2024 Sep 6;12(1):17. https://doi.org/10.1186/s40486-024-00205-1

[42] Bonci A, Fiori S, Higashi H, Tanaka T, Verdini F. An introductory tutorial on brain–computer interfaces and their applications. Electronics. 2021 Feb 27;10(5):560. https://doi.org/10.3390/electronics10050560

[43] Munyon CN. Neuroethics of non-primary brain computer interface: focus on potential military applications. Frontiers in Neuroscience. 2018 Oct 23;12:696. https://doi.org/10.3389/fnins.2018.00696

[44] Latheef S. Brain to brain interfaces (BBIs) in future military operations; blurring the boundaries of individual responsibility. Monash Bioethics Review. 2023 Jun;41(1):49-66. https://link.springer.com/article/10.1007/s40592-022-00171-7

[45] Parhamfar, M. Navigating Mid-Career Precariousness: Employment Challenges for Iran's (Ages 34-44)-Revision 2. https://doi.org/10.13140/RG.2.2.17594.30403

[46] Parhamfar, M. The AI Advantage: Powering Your Startup's Future in Iran. https://doi.org/10.13140/RG.2.2.10151.87201

[47] Zhang Z, Chen Y, Zhao X, Fan W, Peng D, Li T, Zhao L, Fu Y. A review of ethical considerations for the medical applications of brain-computer interfaces. Cognitive Neurodynamics. 2024 Dec;18(6):3603-14. https://doi.org/10.1007/s11571-024-10144-7

[48] Wilkins RB, Coffin T, Pham M, Klein E, Marathe M. Mind the gap: bridging ethical considerations and regulatory oversight in implantable BCI human subjects research. Frontiers in Human Neuroscience. 2025 Jul 23;19:1633627. https://doi.org/10.3389/fnhum.2025.1633627

[49] Watkins CJ, Dayan P. Q-learning. Machine learning. 1992 May;8(3):279-92. https://link.springer.com/article/10.1007/bf00992698

[50] Sarikaya MA, Ince G. Improved BCI calibration in multimodal emotion recognition using heterogeneous adversarial transfer learning. PeerJ Computer Science. 2025 Jan 20;11:e2649. https://doi.org/10.7717/peerj-cs.2649

[51] Xie T, Jiang N. Q* approximation schemes for batch reinforcement learning: A theoretical comparison. In Conference on Uncertainty in Artificial Intelligence 2020 Aug 27 (pp. 550-559). PMLR. https://proceedings.mlr.press/v124/xie20a.html

[52] Shahriari B, Swersky K, Wang Z, Adams RP, De Freitas N. Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE. 2015 Dec 10;104(1):148-75. https://doi.org/10.1109/JPROC.2015.2494218

[53] Brochu E, Cora VM, De Freitas N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599. 2010 Dec 12. https://doi.org/10.48550/arXiv.1012.2599

[54] Hu S, Wang H, Dai Z, Low BK, Ng SH. Adjusted expected improvement for cumulative regret minimization in noisy bayesian optimization. Journal of Machine Learning Research. 2025;26(46):1-33. https://www.jmlr.org/papers/v26/22-0523.html

[55] Nijboer F, Clausen J, Allison BZ, Haselager P. The asilomar survey: Stakeholders’ opinions on ethical issues related to brain-computer interfacing. Neuroethics. 2013 Dec;6(3):541-78. https://doi.org/10.1007/s12152-011-9132-6

[56] Sirbu R, Morley J, Schroder T, Pothukuchi RP, Ugur M, Bhattacharjee A, Floridi L. Regulating next-generation implantable brain-computer interfaces: Recommendations for ethical development and implementation. arXiv preprint arXiv:2506.12540. 2025 Jun 14. https://doi.org/10.48550/arXiv.2506.12540

[57] Tarara P, Przybył I, Schöning J, Gunia A. Motor imagery-based brain-computer interfaces: an exploration of multiclass motor imagery-based control for Emotiv EPOC X. Frontiers in Neuroinformatics. 2025 Aug 12;19:1625279. https://doi.org/10.3389/fninf.2025.1625279

[58] Dohle E, Swanson E, Jovanovic L, Yusuf S, Thompson L, Horsfall HL, Muirhead W, Bashford L, Brannigan J. Toward the Clinical Translation of Implantable Brain–Computer Interfaces for Motor Impairment: Research Trends and Outcome Measures. Advanced Science. 2025 Aug;12(32):e01912. https://doi.org/10.1002/advs.202501912

[59] Szoszkiewicz Ł, Yuste R. Mental privacy: navigating risks, rights and regulation: Advances in neuroscience challenge contemporary legal frameworks to protect mental privacy. EMBO reports. 2025 Jun 25:1-5. https://doi.org/10.1038/s44319-025-00505-6

[60] [Online] Available: https://www.grandviewresearch.com/industry-analysis/brain-computer-interfaces-market

[61] [Online] Available: https://www.statista.com/search/?q=Brain+Computer+Interfaces+&p=1

Downloads

Published

22-11-2025

How to Cite

Bridging Mind and Machine: Enhancing Human Potential Through Self-Regulation and Brain-Computer Interfaces. (2025). Journal of Computing and Data Technology, 1(2), 77-94. https://doi.org/10.71426//jcdt.v1.i2.pp77-94